Coconote
AI notes
AI voice & video notes
Try for free
Sum and Difference Formulas in Trigonometry
Jun 24, 2024
Lecture on Sum and Difference Formulas in Trigonometry
Sum and Difference Formulas
Sine Sum Formula:
$\sin(a + b) = \sin(a)\cos(b) + \cos(a)\sin(b)$
Sine Difference Formula:
$\sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b)$
Application: Evaluating $\sin(75^\circ)$
Identify angles that sum to 75°: $30° + 45°$.
Use the sine sum formula:
$a = 30°, b = 45°$
$\sin(75°) = \sin(30°)\cos(45°) + \cos(30°)\sin(45°)$
$\sin(30°) = \frac{1}{2}$, $\cos(45°) = \frac{\sqrt{2}}{2}$
$\cos(30°) = \frac{\sqrt{3}}{2}$, $\sin(45°) = \frac{\sqrt{2}}{2}$
Computation:
$\frac{1}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}$
$\frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}$
Combined: $\frac{\sqrt{2} + \sqrt{6}}{4}$
Application: Evaluating $\sin(15^\circ)$
Identify angles for difference: $45° - 30°$.
Use the sine difference formula:
$a = 45°, b = 30°$
$\sin(15°) = \sin(45°)\cos(30°) - \cos(45°)\sin(30°)$
Computation:
$\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \times \frac{1}{2}$
$\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}$
Combined: $\frac{\sqrt{6} - \sqrt{2}}{4}$
Special Triangles
30-60-90 Triangle:
Sides: $1, \sqrt{3}, 2$
$\sin(30°) = \frac{1}{2}$, $\sin(60°) = \frac{\sqrt{3}}{2}$
$\cos(30°) = \frac{\sqrt{3}}{2}$
$\tan(30°) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
45-45-90 Triangle:
Sides: $1, 1, \sqrt{2}$
$\sin(45°) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
$\cos(45°) = \frac{\sqrt{2}}{2}$
$\tan(45°) = 1$
Converting Radians to Degrees
Example:
$\cos(\frac{7\pi}{12})$
Convert: $\frac{7\pi}{12} \times \frac{180°}{\pi}$
Result: $105°$
Use angles that sum to $105°$: $60° + 45°$
Use the cosine sum formula:
$\cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b)$
Calculation: $\cos(60°)\cos(45°) - \sin(60°)\sin(45°)$
Results in: $\frac{\sqrt{2} - \sqrt{6}}{4}$
Tangent Sum and Difference Formulas
Tangent Difference Formula:
$\tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$
Example:
$\tan(\frac{\pi}{12})$
Convert: $\frac{15°}{\pi}$
Use angles for difference: $45° - 30°$
Calculation: $\tan(45°) - \tan(30°)$
Results in: $\frac{1 - \frac{\sqrt{3}}{3}}{1 + 1 \times \frac{\sqrt{3}}{3}}$
Simplified to: $2 - \sqrt{3}$
Complex Example: $\tan(\frac{23\pi}{12})$
Convert: $\tan(345°)$
Use angles for sum: $120° + 225°$
Use tangent sum formula:
$\tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$
Calculation considering quadrants and reference angles
Simplified to: $\sqrt{3} - 2$
SOHCAHTOA Mnemonic
SOH:
$\sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}}$
CAH:
$\cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}}$
TOA:
$\tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}}$
📄
Full transcript