Coconote
AI notes
AI voice & video notes
Export note
Try for free
Sum and Difference Formulas in Trigonometry
Jun 24, 2024
Lecture on Sum and Difference Formulas in Trigonometry
Sum and Difference Formulas
Sine Sum Formula:
$\sin(a + b) = \sin(a)\cos(b) + \cos(a)\sin(b)$
Sine Difference Formula:
$\sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b)$
Application: Evaluating $\sin(75^\circ)$
Identify angles that sum to 75°: $30° + 45°$.
Use the sine sum formula:
$a = 30°, b = 45°$
$\sin(75°) = \sin(30°)\cos(45°) + \cos(30°)\sin(45°)$
$\sin(30°) = \frac{1}{2}$, $\cos(45°) = \frac{\sqrt{2}}{2}$
$\cos(30°) = \frac{\sqrt{3}}{2}$, $\sin(45°) = \frac{\sqrt{2}}{2}$
Computation:
$\frac{1}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}$
$\frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}$
Combined: $\frac{\sqrt{2} + \sqrt{6}}{4}$
Application: Evaluating $\sin(15^\circ)$
Identify angles for difference: $45° - 30°$.
Use the sine difference formula:
$a = 45°, b = 30°$
$\sin(15°) = \sin(45°)\cos(30°) - \cos(45°)\sin(30°)$
Computation:
$\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \times \frac{1}{2}$
$\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}$
Combined: $\frac{\sqrt{6} - \sqrt{2}}{4}$
Special Triangles
30-60-90 Triangle:
Sides: $1, \sqrt{3}, 2$
$\sin(30°) = \frac{1}{2}$, $\sin(60°) = \frac{\sqrt{3}}{2}$
$\cos(30°) = \frac{\sqrt{3}}{2}$
$\tan(30°) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
45-45-90 Triangle:
Sides: $1, 1, \sqrt{2}$
$\sin(45°) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
$\cos(45°) = \frac{\sqrt{2}}{2}$
$\tan(45°) = 1$
Converting Radians to Degrees
Example:
$\cos(\frac{7\pi}{12})$
Convert: $\frac{7\pi}{12} \times \frac{180°}{\pi}$
Result: $105°$
Use angles that sum to $105°$: $60° + 45°$
Use the cosine sum formula:
$\cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b)$
Calculation: $\cos(60°)\cos(45°) - \sin(60°)\sin(45°)$
Results in: $\frac{\sqrt{2} - \sqrt{6}}{4}$
Tangent Sum and Difference Formulas
Tangent Difference Formula:
$\tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$
Example:
$\tan(\frac{\pi}{12})$
Convert: $\frac{15°}{\pi}$
Use angles for difference: $45° - 30°$
Calculation: $\tan(45°) - \tan(30°)$
Results in: $\frac{1 - \frac{\sqrt{3}}{3}}{1 + 1 \times \frac{\sqrt{3}}{3}}$
Simplified to: $2 - \sqrt{3}$
Complex Example: $\tan(\frac{23\pi}{12})$
Convert: $\tan(345°)$
Use angles for sum: $120° + 225°$
Use tangent sum formula:
$\tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$
Calculation considering quadrants and reference angles
Simplified to: $\sqrt{3} - 2$
SOHCAHTOA Mnemonic
SOH:
$\sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}}$
CAH:
$\cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}}$
TOA:
$\tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}}$
📄
Full transcript