Oct 21, 2024
|a₁| + |a₂| + ...(-1)ⁿ⁻¹ / n² (Alternating)
1/n² (a p-series with p=2 > 1), converges.1/n, diverges.lim (aₙ) != 0, series diverges.arⁿ
|r| < 1.|r| >= 1.S = a / (1 - r)1/nᵖ
p > 1.p <= 1.f(x).∫ from 1 to ∞ convergence implies series convergence.lim (bₙ) = 0bₙ is decreasing.n.lim |(aₙ₊₁/aₙ)|
lim ⁿ√|aₙ|