Jul 4, 2024
∃X (X/(X²+1) > 1)
X
takes values from the domain D
(positive integers)X
such that X/(X²+1) > 1
X
, the statement X/(X²+1) > 1
is false because X² + 1 > X
for all positive integers X
∃X (X/(X²+1) > 1)
is false¬(X/(X²+1) > 1)
becomes X/(X²+1) ≤ 1
X/(X²+1) ≤ 1
is true for all values of X
in D
∃X P(X) ↔ ∀X ¬P(X)
and vice-versa¬(∀X P(X)) ↔ ∃X ¬P(X)
¬(∃X P(X)) ↔ ∀X ¬P(X)
¬(∀X P(X)) ↔ ∃X ¬P(X)
¬(∀X P(X))
is true
∀X P(X)
is false ↔ There is at least one X
for which P(X)
is false∃X (¬P(X))
holds true¬(∀X P(X))
is false
∀X P(X)
is true ↔ For all values in D
, P(X)
is true¬(∃X P(X)) ↔ ∀X ¬P(X)
∀X P(X) ↔ P(D₁) ∧ P(D₂) ∧ ... ∧ P(Dn)
∃X P(X) ↔ P(D₁) ∨ P(D₂) ∨ ... ∨ P(Dn)
∀X P(X)
Conjunction: True if all individual P(X)
are true∃X P(X)
Disjunction: True if at least one P(X)
is true∀X P(X)
Conjunction: False if at least one P(X)
is false∃X P(X)
Disjunction: False if all individual P(X)
are false