📐

Essential Formulas for GCSE Higher Math

May 3, 2025

GCSE Higher Tier Math Formulas

Introduction

  • The video is focused on formulas needed for the higher tier GCSE math paper.
  • Previous video covers formulas needed for both foundation and higher tier; recommended to watch it as well.
  • This video focuses solely on higher tier-specific formulas.

Volume of a Pyramid

  • Formula: ( \frac{1}{3} \times \text{Area of the base} \times \text{Height} )
    • Example:
      • Base: 6 x 6, Height: 8
      • Calculation: ( \frac{1}{3} \times 36 \times 8 = 96 \text{ cm}^3 )

Quadratic Equation

  • Formula: ( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} )
    • Example:
      • Equation: ( 3x^2 + 5x - 4 = 0 )
      • Solutions: ( x_1 = 0.59, x_2 = -2.26 )

Sine Rule

  • Formula: ( \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} )
    • Used for non-right angled triangles.
    • Example:
      • Opposite pairs: ( A = 30^\circ, a = x; B = 62^\circ, b = 8 )
      • Calculation: ( x = \frac{8 \times \sin 30}{\sin 62} = 2.8 \text{ cm} )

Cosine Rule

  • Formula: ( a^2 = b^2 + c^2 - 2bc \cos A )
    • Used for non-right angled triangles when opposite pair not available.
    • Example:
      • Sides: 6, 8; Angle: 60°
      • Calculation: ( x = \sqrt{52} = 7.2 \text{ cm} )

Area of a Triangle (Using Sine)

  • Formula: ( \frac{1}{2} ab \sin C )
    • Used when height of triangle is unknown.
    • Example:
      • Sides: 7, 8; Angle: 30°
      • Calculation: ( 14 \text{ cm}^2 )

Area of a Sector

  • Formula: ( \frac{\theta}{360} \times \pi r^2 )
    • Example:
      • Angle: 62°, Radius: 8
      • Calculation: ( 34.6 \text{ cm}^2 )

Direct and Inverse Proportion

  • Direct Proportion: ( x = ky^n )
    • Example: ( x \propto y^2 ), ( x = 18, y = 6 ), calculate x for ( y = 8 )
  • Inverse Proportion: ( x = \frac{k}{y^n} )

Histograms and Frequency Density

  • Formula: ( \text{Frequency Density} = \frac{\text{Frequency}}{\text{Class Width}} )
    • Example:
      • Frequency: 8, Class Width: 10
      • Calculation: ( 0.8 )

Equation of a Straight Line

  • Formula: ( y = mx + c )
    • Gradient: ( m = \frac{y_2 - y_1}{x_2 - x_1} )
    • Perpendicular Gradient: Negative reciprocal of original.
    • Example:
      • Points: A(1, 5), B(4, 11)
      • Perpendicular line through (6, 7): ( y = -\frac{1}{2}x + 10 )

Conclusion

  • These are key formulas for the higher tier paper.
  • Further detailed videos are available in the description for each topic.