May 24, 2024
Write coefficients in matrix form:
| 1 | 1 | -1 | -2 | |---|----|-----|---| | 2 | -1 | 1 | 5 | | -1| 2 | 2 | 1 |
Make bottom-left elements zero: Add Row 1 to Row 3
New Row 3: (r3 \leftarrow r1 + r3)
| 1 | 1 | -1 | -2 | |---|---|----|---| | 2 | -1| 1 | 5 | | 0 | 3 | 1 | -1 |
Make the second column, second row zero: Modify Row 2
New Row 2: (r2 \leftarrow -2r1 + r2)
| 1 | 1 | -1 | -2 | |---|---|----|----| | 0 | -3| 3 | 9 | | 0 | 3 | 1 | -1 |
Make third row, second column zero: Add Row 2 to Row 3
New Row 3: (r3 \leftarrow r2 + r3)
| 1 | 1 | -1 | -2 | |---|---|----|---| | 0 | -3| 3 | 9 | | 0 | 0 | 4 | 8 |
Normalize the diagonal elements to 1
Divide Row 2 by -3 and Row 3 by 4
| 1 | 1 | -1 | -2 | |---|----|----|----| | 0 | 1 | -1 | -3 | | 0 | 0 | 1 | 2 |
Perform row operations to make zeros below the pivot positions:
Modify Row 3: (r3 \leftarrow r3 - r1)
| 2 | 1 | -1 | 1 | |---|---|----|----| | 3 | 2 | 1 | 10 | | 0 | 2 | -3 | -5 |
Adjust Row 2:
Modify Row 2: (r2 \leftarrow -3r1 + 2r2)
| 2 | 1 | -1 | 1 | |---|---|----|----| | 0 | 1 | 5 | 17 | | 0 | 2 | -3 | -5 |
Modify Row 3 again:
(r3 \leftarrow -2r2 + r3)
| 2 | 1 | -1 | 1 | |---|---|----|----| | 0 | 1 | 5 | 17 | | 0 | 0 | -13| -39|