Understanding Heat of Neutralization Calculations

Aug 4, 2024

Lecture on Heat of Neutralization

Introduction

  • Topic: Heat of Neutralization
  • Focus: Calculating the standard heat of neutralization (ΔH⁰) and solving related problems

Key Formula

  • Standard Heat of Neutralization (ΔH⁰):

    • [ΔH⁰ = -\frac{Q}{n}]
    • Q = Amount of heat released
    • n = Number of moles of acid or base
    • Negative sign indicates exothermic reaction
  • Heat (Q):

    • [Q = m_s \times C_s \times ΔT]
    • m_s = Mass of the solution
    • C_s = Specific heat capacity of the solution
    • ΔT = Change in temperature (T₂ - T₁)

Definitions and Calculations

  • Mass of the Solution (m_s):

    • Volume of solution = Volume of acid + Volume of base
    • Density of solution (usually 1 g/cm³)
    • Mass = Volume × Density
  • Temperature Change (ΔT):

    • T₁: Average of initial temperatures of acid and base
    • T₂: Final temperature of the mixture

Example Problems

Example 1

  • Given:
    • 75 cm³ of 0.2 M NaOH
    • 75 cm³ of 0.2 M HCl
    • Initial temperature: 14.7°C
    • Final temperature: 16.0°C
    • Specific heat capacity: 4.2 J/g·°C
  • Steps:
    1. Calculate volume and mass of the solution:
      • Volume = 75 cm³ + 75 cm³ = 150 cm³
      • Mass = 150 cm³ × 1 g/cm³ = 150 g
    2. Calculate Q:
      • ΔT = 16.0 - 14.7 = 1.3°C
      • Q = 150 g × 4.2 J/g·°C × 1.3°C
      • Q = 819 J
    3. Calculate number of moles:
      • Moles of acid = 0.2 mol/dm³ × 75 cm³ / 1000 = 0.015 mol
    4. Calculate ΔH⁰:
      • ΔH⁰ = -\frac{819 J}{0.015 mol} = -54.6 kJ/mol

Example 2

  • Given:
    • 50 cm³ of 0.33 M KOH
    • 50 cm³ of 0.33 M HNO₃
    • Initial temperatures: 31°C (KOH), 18°C (HNO₃)
    • Final temperature: 34.1°C
    • Heat capacity of calorimeter: 0.488 J/K
    • Specific heat capacity: 4.208 J/g·K
  • Steps:
    1. Calculate initial temperature (T₁):
      • T₁ = (31 + 33) / 2 = 32°C
    2. Calculate volume and mass of the solution:
      • Volume = 50 cm³ + 50 cm³ = 100 cm³
      • Mass = 100 cm³ × 1 g/cm³ = 100 g
    3. Calculate Q:
      • ΔT = 34.1 - 32 = 2.1°C
      • Q = (100 g × 4.208 J/g·°C + 0.488 J/°C) × 2.1°C
      • Q = 884.705 J
    4. Calculate number of moles:
      • Moles of base = 0.33 mol/dm³ × 50 cm³ / 1000 = 0.0165 mol
    5. Calculate ΔH⁰:
      • ΔH⁰ = -\frac{884.705 J}{0.0165 mol} = -53.618 kJ/mol

Important Notes

  • Practical values may slightly differ from theoretical values.
  • Always use consistent units (convert cm³ to dm³ where necessary).
  • Ensure calculations consider the specific heat capacity provided.
  • Leave answers in consistent decimal places as given in the problem.