Mastering Algebraic Expression Evaluation

Aug 20, 2024

Evaluating Algebraic Expressions

Introduction

  • Focus on evaluating algebraic expressions.
  • Result: a single numerical value.
  • Values to use:
    • W = โˆš5
    • X = -3
    • Y = 2
    • Z = 4
  • Key concepts:
    • Use parentheses to ensure correct signs.
    • Follow the order of operations: "Please Excuse My Dear Aunt Sally":
      • Parentheses
      • Exponents
      • Multiplication and Division (left to right)
      • Addition and Subtraction (left to right)

Order of Operations

  • Simplify inside parentheses first.
  • Handle exponents next.
  • Multiplication and division from left to right.
    • Example: 10 รท 2 ร— 3 = 15, not 5/3.
  • Addition and subtraction from left to right.

Example 1: Evaluating 3x^2 + y - 7

  • Substitute values:
    • 3(-3)^2 + 2 - 7
  • Steps:
    • Exponents: (-3)^2 = 9
    • Multiplication: 3 ร— 9 = 27
    • Addition/Subtraction: 27 + 2 - 7 = 22
  • Importance of showing work and using parentheses.

Example 2: Evaluating (YZ - X)^2

  • Substitute values:
    • (2)(4) - (-3)
  • Steps:
    • Simplify inside parentheses: 8 + 3 = 11
    • Exponents: 11^2 = 121

Example 3: Evaluating Y^2/(X + Z) - X^2/(Y - X)

  • Substitute values:
    • (2)^2 / (-3 + 4) - (-3)^2 / (2 - (-3))
  • Steps:
    • Simplify fractions using common denominators.
    • Result: 11/5 or 2 1/5 (mixed fraction)

Example 4: Evaluating W^2 - 3X

  • Substitute values:
    • (โˆš5)^2 - 3(-3)
  • Steps:
    • Simplify exponents: โˆš5 ร— โˆš5 = 5
    • Multiplication: -3 ร— -3 = 9
    • Result: 5 + 9 = 14

Example 5: Absolute Value of 3X + Z^2

  • Substitute values:
    • |3(-3) + 4^2|
  • Steps:
    • Simplify: -9 + 16 = 7
    • Absolute value: |7| = 7

Conclusion

  • Importance of careful evaluation and order of operations.
  • Use of parentheses and understanding absolute values.
  • Encouragement to practice and do homework.