🔵

Understanding the Unit Circle

Sep 4, 2024

Unit Circle and Trigonometric Functions

Quadrants and Signs

  • Quadrants:
    • Quadrant I: All functions positive (All Students Take Calculus)
    • Quadrant II: Sine positive
    • Quadrant III: Tangent positive
    • Quadrant IV: Cosine positive

Key Angles in Degrees and Radians

  • Degrees and their Radian equivalents:
    • 0° = 0
    • 30° = Ï€/6
    • 45° = Ï€/4
    • 60° = Ï€/3
    • 90° = Ï€/2
    • 120° = 2Ï€/3
    • 135° = 3Ï€/4
    • 150° = 5Ï€/6
    • 180° = Ï€
    • 210° = 7Ï€/6
    • 240° = 4Ï€/3
    • 270° = 3Ï€/2
    • 300° = 5Ï€/3
    • 315° = 7Ï€/4
    • 330° = 11Ï€/6
    • 360° = 2Ï€

Coordinates on the Unit Circle

  • First Quadrant:

    • 0°: (1, 0)
    • 30°: (√3/2, 1/2)
    • 45°: (√2/2, √2/2)
    • 60°: (1/2, √3/2)
    • 90°: (0, 1)
  • Second Quadrant: (X negative)

    • 120°: (-1/2, √3/2)
    • 135°: (-√2/2, √2/2)
    • 150°: (-√3/2, 1/2)
    • 180°: (-1, 0)
  • Third Quadrant: (X and Y negative)

    • 210°: (-√3/2, -1/2)
    • 225°: (-√2/2, -√2/2)
    • 240°: (-1/2, -√3/2)
    • 270°: (0, -1)
  • Fourth Quadrant: (X positive, Y negative)

    • 300°: (1/2, -√3/2)
    • 315°: (√2/2, -√2/2)
    • 330°: (√3/2, -1/2)
    • 360°: (1, 0)

Evaluating Sine, Cosine, and Tangent

  • Sine function relates to Y-coordinate.
  • Cosine function relates to X-coordinate.
  • Tangent function is calculated as y/x.

Example Evaluations:

  • Sine(60°): √3/2
  • Cosine(60°): 1/2
  • Tangent(60°): √3

Negative Angles and Coterminal Angles

  • To find coterminal angles, add or subtract 360°.

Special Triangles

  • 30-60-90 Triangle:

    • Opposite 30°: 1
    • Opposite 60°: √3
    • Hypotenuse: 2
  • 45-45-90 Triangle:

    • Both legs: 1
    • Hypotenuse: √2

Reference Angles

  • Reference angles help in evaluating sine and cosine for angles outside Quadrant I.
  • Formulae:
    • Quadrant II: 180° - angle
    • Quadrant III: angle - 180°
    • Quadrant IV: 360° - angle

Inverse Trigonometric Functions

  • Restricted Domains:
    • Inverse Sine: (-90°, 90°)
    • Inverse Cosine: (0°, 180°)
    • Inverse Tangent: (-90°, 90°)

Example Evaluations for Inverse Functions

  • Inverse sine(1/2): 30°
  • Inverse cosine(1/2): 60°
  • Inverse tangent(1): 45°

Summary of Key Relationships

  • Sine, cosine, and tangent can be evaluated using special triangles or the unit circle.
  • Always consider the signs based on the quadrant of the angle.
  • Use reference angles for evaluations outside of the first quadrant.