Jul 30, 2024
dy/dx
where y and x are variables related by a function y = f(x)
.x
is the independent variable and y
the dependent variable.d(u^n) / dx = n * u^(n-1) * du/dx
d(x^3) / dx = 3 * x^2
d(5) / dx = 0
d(e^x) / dx = e^x
d(e^y) / dx = e^y * dy/dx
d(ln(x)) / dx = 1/x
d(ln(y)) / dx = (1/y) * dy/dx
d(sin(x)) / dx = cos(x)
d(cos(x)) / dx = -sin(x)
d(tan(x)) / dx = sec^2(x)
d(sec(x)) / dx = sec(x) * tan(x)
d(cot(x)) / dx = -csc^2(x)
d(csc(x)) / dx = -csc(x) * cot(x)
v = dx/dt
a = dv/dt = d²x/dt²
∫y * dx
∫ from a to b (y * dx)
∫x^n * dx = (x^(n+1)/(n+1)) + C
(where n ≠ -1)∫x^2 * dx = (x^3/3) + C
∫(1/x) * dx = ln|x| + C
∫dx = x + C
∫ from 2 to 3 (x^2) dx = [x^3/3] from 2 to 3
∫(e^x) * dx = e^x + C
x = a + bt²
, find v = dx/dt = 2bt