Jul 30, 2024
dy/dx where y and x are variables related by a function y = f(x).x is the independent variable and y the dependent variable.d(u^n) / dx = n * u^(n-1) * du/dxd(x^3) / dx = 3 * x^2d(5) / dx = 0d(e^x) / dx = e^xd(e^y) / dx = e^y * dy/dxd(ln(x)) / dx = 1/xd(ln(y)) / dx = (1/y) * dy/dxd(sin(x)) / dx = cos(x)d(cos(x)) / dx = -sin(x)d(tan(x)) / dx = sec^2(x)d(sec(x)) / dx = sec(x) * tan(x)d(cot(x)) / dx = -csc^2(x)d(csc(x)) / dx = -csc(x) * cot(x)*v = dx/dta = dv/dt = d²x/dt²
∫y * dx∫ from a to b (y * dx)∫x^n * dx = (x^(n+1)/(n+1)) + C (where n ≠-1)∫x^2 * dx = (x^3/3) + C∫(1/x) * dx = ln|x| + C∫dx = x + C∫ from 2 to 3 (x^2) dx = [x^3/3] from 2 to 3∫(e^x) * dx = e^x + Cx = a + bt², find v = dx/dt = 2bt