Coconote
AI notes
AI voice & video notes
Try for free
📚
Understanding U-Substitution in Integration
Apr 30, 2025
U-Substitution for Integration
Overview
U-substitution is a method for finding antiderivatives, especially useful for definite integrals.
The key steps involve identifying the substitution variable ( u ) and its derivative ( du ), and then substituting back after integration.
Example Problems
Problem 1: ( \int 4x(x^2 + 5)^3 , dx )
Set ( u = x^2 + 5 ):
( du = 2x , dx )
Solving for ( dx ): ( dx = \frac{du}{2x} )
Substitute:
( 4x(x^2 + 5)^3 , dx = 2 \int u^3 , du )
Integrate:
( 2 \times \frac{u^4}{4} + C = \frac{1}{2}u^4 + C )
Back Substitute:
( \frac{1}{2}(x^2 + 5)^4 + C )
Problem 2: ( \int 8 \cos(4x) , dx )
Set ( u = 4x ):
( du = 4 , dx )
( dx = \frac{du}{4} )
Substitute:
( 8 \int \cos(u) \cdot \frac{du}{4} = 2 \int \cos(u) , du )
Integrate:
( 2 \sin(u) + C )
Back Substitute:
( 2 \sin(4x) + C )
Problem 3: ( \int x^3 e^{x^4} , dx )
Set ( u = x^4 ):
( du = 4x^3 , dx )
( dx = \frac{du}{4x^3} )
Substitute and Simplify:
( \int e^u \cdot \frac{du}{4} = \frac{1}{4} \int e^u , du )
Integrate:
( \frac{1}{4} e^u + C )
Back Substitute:
( \frac{1}{4} e^{x^4} + C )
Problem 4: ( \int 8x \sqrt{40 - 2x^2} , dx )
Set ( u = 40 - 2x^2 ):
( du = -4x , dx )
( dx = \frac{du}{-4x} )
Substitute and Simplify:
( -2 \int u^{1/2} , du )
Integrate using Power Rule:
( -\frac{4}{3}u^{3/2} + C )
Back Substitute:
( -\frac{4}{3}(40 - 2x^2)^{3/2} + C )
Additional Examples
Problem 5: ( \int \frac{x^3}{(2 + x^4)^2} , dx )
Set ( u = 2 + x^4 ):
( du = 4x^3 , dx )
( dx = \frac{du}{4x^3} )
Substitute and Cancel:
( \frac{1}{4} \int u^{-2} , du )
Integrate:
( -\frac{1}{4u} + C )
Back Substitute:
( -\frac{1}{4(2 + x^4)} + C )
Problem 6: ( \int \sin^4(x) \cos(x) , dx )
Set ( u = \sin(x) ):
( du = \cos(x) , dx )
Substitute:
( \int u^4 , du )
Integrate:
( \frac{1}{5}u^5 + C )
Back Substitute:
( \frac{1}{5}\sin^5(x) + C )
Key Tips for U-Substitution
Identify ( u ) such that its derivative ( du ) matches terms in the integrand.
Always solve for ( dx ) in terms of ( du ).
Substitute back all instances of ( u ) at the end.
📄
Full transcript