Coconote
AI notes
AI voice & video notes
Try for free
√
Understanding Square Root Simplifications
Oct 24, 2024
Simplifying Square Roots
Introduction
Focus on simplifying square roots from basic to more complex examples.
Basic Simplifications
Square Root of Perfect Squares
Square Root of 49
:
49 is 7 x 7.
Square root is 7.
Square Root of Negative Numbers
:
Example: ( \sqrt{-25} )
Break it into 25 x (-1).
( \sqrt{-1} = i ) (imaginary number).
( \sqrt{25} = 5 ), so ( \sqrt{-25} = 5i ).
Real Numbers with Negative Signs Outside
Negative Square Root of 81
:
( -\sqrt{81} )
81 is 9 x 9, ( \sqrt{81} = 9 ).
Result: -9.
Negative Inside the Square Root
Negative Square Root of Negative 64
:
( -\sqrt{-64} )
( \sqrt{-1} = i ), ( \sqrt{64} = 8 ).
Result: -8i.
Simplifying Non-Perfect Squares
Concept of Perfect Squares
Perfect squares: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.
Simplify non-perfect square roots by identifying the highest perfect square factor.
Examples
Square Root of 18
:
18 = 9 x 2.
( \sqrt{9} = 3 ), so ( \sqrt{18} = 3\sqrt{2} ).
Square Root of 75
:
75 = 25 x 3.
( \sqrt{25} = 5 ), so ( \sqrt{75} = 5\sqrt{3} ).
Practice Problems
Square Root of 12
:
12 = 4 x 3.
( \sqrt{4} = 2 ), so ( \sqrt{12} = 2\sqrt{3} ).
Square Root of 48
:
48 = 16 x 3.
( \sqrt{16} = 4 ), so ( \sqrt{48} = 4\sqrt{3} ).
Complex Expressions
Expression Simplification
Expression
: ( 3\sqrt{18} + 5\sqrt{72} - 4\sqrt{32} )
Simplify each term:
( 18 = 9 \times 2 \rightarrow 3\times3\sqrt{2} = 9\sqrt{2} )
( 72 = 36 \times 2 \rightarrow 5\times6\sqrt{2} = 30\sqrt{2} )
( 32 = 16 \times 2 \rightarrow 4\times4\sqrt{2} = 16\sqrt{2} )
Combine: ( 9 + 30 - 16 = 23 )
Final Result: ( 23\sqrt{2} )
Conclusion
Simplification involves identifying and employing perfect squares.
Combine like terms when radicals are the same.
Video end: Subscribe for more content.
📄
Full transcript