Coconote
AI notes
AI voice & video notes
Try for free
🔄
Determining Domains of Inverse Functions
May 1, 2025
Finding the Domain of an Inverse Function
Overview
Focus on how to find the domain of an inverse function.
Understand concepts of domain and range.
Examine various function types and restrictions.
General Concepts
Domain
: X values a function can have.
Range
: Y values a function can take.
One-to-One Function
: Must pass the horizontal line test to ensure an inverse exists.
Example 1: Linear Function
Function
: f(x) = 3x - 4
Graph
: Y-intercept at -4; slope of 3.
Domain & Range
: Both from (-∞, ∞).
Inverse Function
: Swap x and y, solve for y.
Result
: Inverse function is (x + 4) / 3.
Domain of Inverse
: Same as the range of the original, (-∞, ∞).
Example 2: Quadratic Function
Function
: f(x) = x² - 3
Graph
: Parabola shifted 3 units down.
Horizontal Line Test
: Does not pass without restriction.
Restriction
: Use only x ≥ 0.
Restricted Domain
: [0, ∞)
Range
: [-3, ∞)
Inverse Function
: x = √(x + 3)
Graph reflects about y = x.
Domain of Inverse
:
-3, ∞)
Example 3: Radical Function
Function
: f(x) = √(8 - 2x)
Domain
: Solve 8 - 2x ≥ 0, resulting in (-∞, 4].
Range
: [0, ∞) as y values start at 0.
Inverse Function
: y = 8 - x² / 2
Graph reflects about y = x.
Domain of Inverse
:
0, ∞)
Example 4: Rational Function
Function
: f(x) = (3x + 2) / (5x - 4)
Domain
: x ≠4/5 due to zero in denominator.
Range
: y ≠3/5 (horizontal asymptote).
Inverse Function
: y = (4x + 2) / (5x - 3)
Domain of Inverse
: x ≠3/5, reflecting range of original.
Key Takeaways
To find the domain of an inverse function, determine the range of the original function.
Ensure the original function is one-to-one by restricting domains if necessary.
Analyze function types (linear, quadratic, radical, rational) to apply correct methods.
📄
Full transcript