Lecture on Graphs for Interval and Ratio Level Data
Key Concepts
- Interval and Ratio Data: Both order and distance matter. Unlike ordinal data, distance in interval and ratio data is meaningful.
- Area in Graphs: A key takeaway is that area in graphs always means something.
Histograms
- Characteristics:
- Bars in histograms touch because distance is meaningful.
- Histogram bars represent continuous intervals, unlike bar graphs where distance doesn't matter and bars don't touch.
- Example:
- Heights categorized in intervals (60-62 inches, 62-64 inches, etc.)
- Can use raw frequency or relative frequency.
- Important to understand that frequency can be converted to relative frequency.
Graph Construction
- X-axis and Y-axis:
- X-axis represents the variable (e.g. height in inches).
- Y-axis can represent percentages or raw numbers.
- Labeling:
- Midpoints or endpoints of bars can be labeled; both are common practices.
- Y-axis can show either relative frequency or frequency.
Bar Number and Width
- Bar Quantity: A good histogram usually has between 10 and 20 bars.
- Category Width: All categories should have equal width in a histogram.
- If categories have unequal widths, it affects the meaning of area in graphs.
Common Mistakes
- Avoid having unequal width categories in histograms.
- Incorrect representation leads to misleading area interpretations.
- X-axis must accurately represent distance.
Density Histograms
- Definition: Used when categories have unequal widths.
- Y-axis uses a density scale, representing percent per unit.
- Importance: Ensures area in the graph still accurately reflects data distribution.
- Application: More about understanding area importance rather than creating such graphs for general use.
Example of Density Scale
- Percent per Unit (PPU): If a bar is two units wide with 5% of people, it represents 2.5% per unit.
- Adjustments for unequal categories ensure areas still reflect actual distribution.
Importance of Area
- Area, not just height or width, determines the significance of sections in histograms.
- Essential for understanding probability distributions in future discussions.
Conclusion
- Understanding the properties and correct construction of histograms and density histograms is crucial.
- Emphasis on area meaning in graphs is important for future topics in probability distributions.
This concludes the lecture. The next session will cover further aspects of this topic.