Coconote
AI notes
AI voice & video notes
Export note
Try for free
Fundamentals of Trigonometry Explained
Sep 4, 2024
Trigonometry Basics
Circle and Arc Length
Radius (r):
Distance from the center to any point on the circle.
Arc Length (s):
Distance along the circle's circumference.
Formula: ( s = \theta \times r )
( \theta ) should be in radians.
Units for arc length match units for the radius.
Conversions:
( 360^{\circ} = 2\pi ) radians
Conversion videos available online.
Area of a Sector
Formula 1:
( \text{Area} = \frac{1}{2} \times \theta \times r^2 )
( \theta ) in radians.
Formula 2:
( \text{Area} = \frac{\theta}{360^{\circ}} \times \pi \times r^2 )
( \theta ) in degrees.
Right Triangle Trigonometry
Components:
Opposite Side:
Opposite the angle ( \theta ).
Adjacent Side:
Next to the angle ( \theta ).
Hypotenuse:
Longest side.
SOHCAHTOA Mnemonic:
Sine (SOH):
( \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} )
Cosine (CAH):
( \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} )
Tangent (TOA):
( \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} )
Reciprocal Identities
Secant (sec):
( \sec \theta = \frac{1}{\cos \theta} = \frac{\text{Hypotenuse}}{\text{Adjacent}} )
Cosecant (csc):
( \csc \theta = \frac{1}{\sin \theta} = \frac{\text{Hypotenuse}}{\text{Opposite}} )
Cotangent (cot):
( \cot \theta = \frac{1}{\tan \theta} = \frac{\text{Adjacent}}{\text{Opposite}} )
Quotient Identities
( \tan \theta = \frac{\sin \theta}{\cos \theta} )
( \cot \theta = \frac{\cos \theta}{\sin \theta} )
Pythagorean Identities
( \sin^2 \theta + \cos^2 \theta = 1 )
( 1 + \tan^2 \theta = \sec^2 \theta )
( 1 + \cot^2 \theta = \csc^2 \theta )
Even-Odd Identities
Odd Functions:
( \sin(-\theta) = -\sin \theta )
( \tan(-\theta) = -\tan \theta )
( \csc(-\theta) = -\csc \theta )
( \cot(-\theta) = -\cot \theta )
Even Functions:
( \cos(-\theta) = \cos \theta )
( \sec(-\theta) = \sec \theta )
Co-Function Identities
Complementary Angles:
( \sin(90^{\circ} - \theta) = \cos \theta )
( \tan(90^{\circ} - \theta) = \cot \theta )
( \sec(90^{\circ} - \theta) = \csc \theta )
( \csc(90^{\circ} - \theta) = \sec \theta )
Double Angle Formulas
Sine:
( \sin 2\theta = 2 \sin \theta \cos \theta )
Alternative: ( \sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta} )
Cosine:
( \cos 2\theta = \cos^2 \theta - \sin^2 \theta )
Alternative forms: ( \cos 2\theta = 2 \cos^2 \theta - 1 = 1 - 2 \sin^2 \theta )
Tangent:
( \tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta} )
Additional Resources
Formula Sheet:
Available for more advanced formulas (half-angle, triple-angle, power reducing, etc.).
Further Study:
Check online resources or the provided formula sheet link for additional identities and formulas.
📄
Full transcript