Fundamentals of Trigonometry Explained

Sep 4, 2024

Trigonometry Basics

Circle and Arc Length

  • Radius (r): Distance from the center to any point on the circle.
  • Arc Length (s): Distance along the circle's circumference.
    • Formula: ( s = \theta \times r )
    • ( \theta ) should be in radians.
    • Units for arc length match units for the radius.
  • Conversions:
    • ( 360^{\circ} = 2\pi ) radians
    • Conversion videos available online.

Area of a Sector

  • Formula 1: ( \text{Area} = \frac{1}{2} \times \theta \times r^2 )
    • ( \theta ) in radians.
  • Formula 2: ( \text{Area} = \frac{\theta}{360^{\circ}} \times \pi \times r^2 )
    • ( \theta ) in degrees.

Right Triangle Trigonometry

  • Components:
    • Opposite Side: Opposite the angle ( \theta ).
    • Adjacent Side: Next to the angle ( \theta ).
    • Hypotenuse: Longest side.
  • SOHCAHTOA Mnemonic:
    • Sine (SOH): ( \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} )
    • Cosine (CAH): ( \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} )
    • Tangent (TOA): ( \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} )

Reciprocal Identities

  • Secant (sec): ( \sec \theta = \frac{1}{\cos \theta} = \frac{\text{Hypotenuse}}{\text{Adjacent}} )
  • Cosecant (csc): ( \csc \theta = \frac{1}{\sin \theta} = \frac{\text{Hypotenuse}}{\text{Opposite}} )
  • Cotangent (cot): ( \cot \theta = \frac{1}{\tan \theta} = \frac{\text{Adjacent}}{\text{Opposite}} )

Quotient Identities

  • ( \tan \theta = \frac{\sin \theta}{\cos \theta} )
  • ( \cot \theta = \frac{\cos \theta}{\sin \theta} )

Pythagorean Identities

  • ( \sin^2 \theta + \cos^2 \theta = 1 )
  • ( 1 + \tan^2 \theta = \sec^2 \theta )
  • ( 1 + \cot^2 \theta = \csc^2 \theta )

Even-Odd Identities

  • Odd Functions:
    • ( \sin(-\theta) = -\sin \theta )
    • ( \tan(-\theta) = -\tan \theta )
    • ( \csc(-\theta) = -\csc \theta )
    • ( \cot(-\theta) = -\cot \theta )
  • Even Functions:
    • ( \cos(-\theta) = \cos \theta )
    • ( \sec(-\theta) = \sec \theta )

Co-Function Identities

  • Complementary Angles:
    • ( \sin(90^{\circ} - \theta) = \cos \theta )
    • ( \tan(90^{\circ} - \theta) = \cot \theta )
    • ( \sec(90^{\circ} - \theta) = \csc \theta )
    • ( \csc(90^{\circ} - \theta) = \sec \theta )

Double Angle Formulas

  • Sine:
    • ( \sin 2\theta = 2 \sin \theta \cos \theta )
    • Alternative: ( \sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta} )
  • Cosine:
    • ( \cos 2\theta = \cos^2 \theta - \sin^2 \theta )
    • Alternative forms: ( \cos 2\theta = 2 \cos^2 \theta - 1 = 1 - 2 \sin^2 \theta )
  • Tangent:
    • ( \tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta} )

Additional Resources

  • Formula Sheet: Available for more advanced formulas (half-angle, triple-angle, power reducing, etc.).
  • Further Study: Check online resources or the provided formula sheet link for additional identities and formulas.