Jul 18, 2024
x^3 + 2x - 2 = 0Characteristics: Powerful and quick, but may not always converge
Formula (without proof):
x_(n+1) = x_n - F(x_n)/F'(x_n)_f(x):
f(x) = x^3 + 2x - 2f'(x):
f'(x) = 3x^2 + 2x_1 = 1x_2:
x_2 = x_1 - f(x_1)/f'(x_1)f(1) = 1^3 + 2*1 - 2 = 1f'(1) = 3*1^2 + 2 = 5x_2 = 1 - 1/5 = 0.8x_3:
x_3 = x_2 - f(x_2)/f'(x_2)f(0.8) = 0.8^3 + 2*0.8 - 2 ≈ 0.592f'(0.8) = 3*0.8^2 + 2 ≈ 3.92x_3 = 0.8 - 0.592/3.92 ≈ 0.7714x_1 (e.g., 1)x_4 ≈ 0.7709x_5 ≈ 0.7709x = 0.77 (2 decimal places)x_1 = 0.5:
x_2 ≈ 0.818x_3 ≈ 0.7722x_4 ≈ 0.7709x_5 ≈ 0.7709x = 0.77 (2 decimal places)