Jul 18, 2024
x^3 + 2x - 2 = 0
Characteristics: Powerful and quick, but may not always converge
Formula (without proof):
x_(n+1) = x_n - F(x_n)/F'(x_n)
f(x)
:
f(x) = x^3 + 2x - 2
f'(x)
:
f'(x) = 3x^2 + 2
x_1 = 1
x_2
:
x_2 = x_1 - f(x_1)/f'(x_1)
f(1) = 1^3 + 2*1 - 2 = 1
f'(1) = 3*1^2 + 2 = 5
x_2 = 1 - 1/5 = 0.8
x_3
:
x_3 = x_2 - f(x_2)/f'(x_2)
f(0.8) = 0.8^3 + 2*0.8 - 2 ≈ 0.592
f'(0.8) = 3*0.8^2 + 2 ≈ 3.92
x_3 = 0.8 - 0.592/3.92 ≈ 0.7714
x_1
(e.g., 1)x_4 ≈ 0.7709
x_5 ≈ 0.7709
x = 0.77
(2 decimal places)x_1 = 0.5
:
x_2 ≈ 0.818
x_3 ≈ 0.7722
x_4 ≈ 0.7709
x_5 ≈ 0.7709
x = 0.77
(2 decimal places)