📐

Pengertian dan Contoh Dilatasi Geometri

Nov 30, 2024

Transformasi Geometri: Dilatasi

Pengertian Dilatasi

  • Dilatasi adalah transformasi geometri yang mengubah ukuran suatu benda.
  • Berbeda dengan transformasi lain yang mengubah posisi, dilatasi mengubah ukuran objek.
  • Ukuran objek dapat diperbesar atau diperkecil berdasarkan faktor skala tertentu.

Konsep Dasar Dilatasi

  • Misalkan memiliki segitiga dengan pusat dilatasi di titik ( O(0,0) ).
  • Tarik garis dari titik pusat ( O ) ke titik-titik sudut segitiga.
  • Perpanjang jarak setiap titik dari pusat sebanyak faktor skala ( k ).
  • Hasilnya adalah segitiga baru dengan ukuran yang berbeda, namun bentuknya tetap sama.

Faktor Skala ( k )

  • ( k > 1 ): Objek diperbesar (ukuran menjadi ( k ) kali lipat lebih besar).
  • ( 0 < k < 1 ): Objek diperkecil (ukuran menjadi ( k ) kali lipat lebih kecil).
  • ( k = -1 ): Ukuran tetap sama, namun arah berlawanan.
  • ( k < -1 ): Objek diperbesar, tetapi arah berlawanan.
  • ( -1 < k < 0 ): Objek diperkecil, tetapi arah berlawanan.

Menentukan Bayangan Titik

  • Diberikan titik ( (X, Y) ) dan pusat ( O(0,0) ) dengan faktor skala ( k ).
  • Koordinat bayangan ( (X', Y') ) dihitung dengan:
    • ( X' = k \cdot X )
    • ( Y' = k \cdot Y )

Contoh Perhitungan

  1. Titik A(4,5) dengan ( k = 3 ):
    • Koordinat Bayangan: ( A'(12,15) ).

Dilatasi dengan Pusat yang Bukan ( (0,0) )

  • Misalkan pusat ( (M,N) ).
  • Gunakan rumus:
    • ( X' - M = k(X - M) )
    • ( Y' - N = k(Y - N) )

Contoh:

  • Titik A(4,5) dengan ( k = 3 ) dan pusat ( P(-3,2) ):
    • Koordinat bayangan: ( (18,11) ).

Dilatasi Garis atau Kurva

  1. Gunakan metode invers dan substitusi pada persamaan garis awal.
  2. Misalkan persamaan awal: ( 2X - 3Y = 7 ).
  3. Gunakan transformasi untuk ( X ) dan ( Y ) berdasarkan rumus dilatasi.
  4. Contoh: Faktor skala ( k = -3 ), pusat ( P(-1,2) ).
    • Persamaan bayangan: ( -2X' + 3Y' = 5 ).

Kesimpulan

  • Dilatasi dapat digunakan untuk memperbesar atau memperkecil objek dengan mempertahankan bentuk.
  • Faktor skala dan pusat dilatasi adalah kunci dalam menentukan hasil bayangan dilatasi.