Lecture Notes on Expectation, Variance, and Covariance
Recap of Previous Class
- Key concepts covered: Expectation, Variance, and Covariance.
Expectation
- Expectation (E) of a random variable X: (E(X))
- For discrete random variables (RVs): (\sum_x x \cdot P(x))
- For continuous RVs: (\int_{-\infty}^{\infty} x \cdot f(x) , dx)
- Example: Given (E(X) = 3/5), determine constants (a) and (b) in the probability density function (f(x) = a + b \cdot x^2) for (0 \leq x \leq 1).
- Equation 1: (a + b/3 = 1)
- Equation 2: (2a + b = 12/5)
- Solution gives: (a = 3/5), (b = 6/5)_
Properties of Expectation
- (E(aX + b) = a \cdot E(X) + b)
- Example calculation involving (E(2 + 4X)^2)
- Expand and simplify using properties of expectation.
Variance
- Variance (Var): Measures the spread of the distribution
- (Var(X) = E(X^2) - [E(X)]^2)
- Identity: (Var(aX + b) = a^2 \cdot Var(X))
Covariance
- Covariance (Cov): Measures the joint variability of two random variables X and Y
- (Cov(X, Y) = E(XY) - E(X)E(Y))
- Special Case: If X and Y are independent, then (Cov(X, Y) = 0).
Calculation of Variance in Specific Scenarios
- Coin Toss Example:
- Toss a coin 10 times, compute variance of the number of heads.
- Independent events: (Var(\sum X_i) = \sum Var(X_i))
- (Var(X_i) = 1/4), hence (Var = 10 \times 1/4 = 5/2)
- Die Roll Example:
- Roll a die 10 times, compute variance of the sum.
- (E(X) = 7/2), (Var(X_i)) calculated, (Var = 10 \times 35/12).
Correlation Coefficient
- (\rho = \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}})
Key Takeaways
- Expectation and Variance: Essential for estimating quantities and understanding distributions.
- Formula Recap:
- (E(g(X)) = \sum g(x)P(x)) or (\int g(x)f(x) , dx)
- (Var(aX + b) = a^2 \cdot Var(X))
- For independent RVs: (Var(\sum X_i) = \sum Var(X_i))
Thank you for your attention. We'll meet again in the next class.