📊

L21

Sep 20, 2024

Lecture Notes on Expectation, Variance, and Covariance

Recap of Previous Class

  • Key concepts covered: Expectation, Variance, and Covariance.

Expectation

  • Expectation (E) of a random variable X: (E(X))
    • For discrete random variables (RVs): (\sum_x x \cdot P(x))
    • For continuous RVs: (\int_{-\infty}^{\infty} x \cdot f(x) , dx)
  • Example: Given (E(X) = 3/5), determine constants (a) and (b) in the probability density function (f(x) = a + b \cdot x^2) for (0 \leq x \leq 1).
    • Equation 1: (a + b/3 = 1)
    • Equation 2: (2a + b = 12/5)
    • Solution gives: (a = 3/5), (b = 6/5)_

Properties of Expectation

  • (E(aX + b) = a \cdot E(X) + b)
  • Example calculation involving (E(2 + 4X)^2)
    • Expand and simplify using properties of expectation.

Variance

  • Variance (Var): Measures the spread of the distribution
    • (Var(X) = E(X^2) - [E(X)]^2)
  • Identity: (Var(aX + b) = a^2 \cdot Var(X))

Covariance

  • Covariance (Cov): Measures the joint variability of two random variables X and Y
    • (Cov(X, Y) = E(XY) - E(X)E(Y))
  • Special Case: If X and Y are independent, then (Cov(X, Y) = 0).

Calculation of Variance in Specific Scenarios

  • Coin Toss Example:
    • Toss a coin 10 times, compute variance of the number of heads.
    • Independent events: (Var(\sum X_i) = \sum Var(X_i))
    • (Var(X_i) = 1/4), hence (Var = 10 \times 1/4 = 5/2)
  • Die Roll Example:
    • Roll a die 10 times, compute variance of the sum.
    • (E(X) = 7/2), (Var(X_i)) calculated, (Var = 10 \times 35/12).

Correlation Coefficient

  • (\rho = \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}})

Key Takeaways

  • Expectation and Variance: Essential for estimating quantities and understanding distributions.
  • Formula Recap:
    • (E(g(X)) = \sum g(x)P(x)) or (\int g(x)f(x) , dx)
    • (Var(aX + b) = a^2 \cdot Var(X))
    • For independent RVs: (Var(\sum X_i) = \sum Var(X_i))

Thank you for your attention. We'll meet again in the next class.