Coconote
AI notes
AI voice & video notes
Try for free
📐
Integration of Cosine to the Fourth Power
Jun 6, 2024
Integrating Cosine to the Fourth Power
Power Reduction Formula Application
Objective:
Integrate ( \cos^4(5x) )
First Step:
Convert ( \cos^4(5x) ) to a power of 2: ( (\cos^2(5x))^2 )
Applying Power Reduction Formula for ( \cos^2 )
Rewrite using power reduction: ( \cos^2(5x) = \frac{1 + \cos(2\theta)}{2} )
For ( \theta = 5x ), we get:
( \cos^2(5x) = \frac{1 + \cos(10x)}{2} ) squared
Integrating this expression requires simplifying further
Simplifying the Expression
Expand: ( (1 + \cos(10x))^2 / 4
Simplification Steps
Numerator: Expand ( (1 + \cos(10x))^2 ) using FOIL (First, Outer, Inner, Last)
Denominator: Combine constants, in this case, squaring 2 to get 4
Expansion Math
FOIL Expansion:
First: ( 1*1 = 1 )
Outer: ( 1 * \cos(10x) = \cos(10x) )
Inner: ( 1 * \cos(10x) = \cos(10x) )
Last: ( \cos(10x) * \cos(10x) = \cos^2(10x) )
Combine: ( 1 + 2\cos(10x) + \cos^2(10x) )
Integration Step-by-Step
Separate Terms:
Integrate: ( \frac{1}{4}(1 + 2\cos(10x) + \cos^2(10x)) )
Integrate Each Term:
( \int 1 , dx = x )
Result: ( x / 4 )
( \int 2\cos(10x) , dx )
Antiderivative of ( \cos(10x) ) is ( \frac{\sin(10x)}{10} )
Result: ( \frac{\sin(10x)}{20} )
( \int \cos^2(10x) , dx )
Apply another power reduction formula:
( \frac{1 + \cos(20x)}{2} , dx )
Combine constants: ( \frac{1}{8} \int 1 , dx + \frac{1}{8} \int \cos(20x) , dx )
Result: ( \frac{x}{8} + \frac{\sin(20x)}{160} )
Combining Results
Final Integral:
( \frac{x}{4} + \frac{\sin(10x)}{20} + \frac{x}{8} + \frac{\sin(20x)}{160} + C )
Simplify: ( \frac{3x}{8} + \frac{\sin(10x)}{20} + \frac{\sin(20x)}{160} + C )
Conclusion
Result:
Successfully integrated ( \cos^4(5x) )
Remember integrated terms and constant of integration (C)
Keep practicing power reduction and integral separation techniques
📄
Full transcript