Jul 8, 2024
a + bi
a: Real partb: Imaginary parti = √(-1) and i² = -1x² = -1)|z₃| = √(1² + 5²) = √26|z₃| vs |z₁| + |z₂|√26 ≠ 2√13(z₁ / z₂) using complex conjugate of the denominator-i|z| and argument θr * (cosθ + i sinθ)(1 + i)^8, rewrite in polar form then apply the theorem to simplify(1 + i)^8 = 16*a + bi is a root, then a - bi is also a root for polynomials with real coefficientsz = r^1/n [cos(θ/n + 2kπ/n) + i sin(θ/n + 2kπ/n)] for multiple rootsw² = v, find values by converting to polar, then general polar form, then using De Moivre’s theoremnth roots, e.g., cube roots of unity solve z^3 = 1z = e^(2kπi/3) for k = 0, 1, 2a + bi equals sqrt of a complex number by equating reals and imaginaries