📐

Memorization Techniques for Trigonometry

Apr 26, 2025

Trigonometry Values and Memorization Techniques

Overview

  • Explanation of how to remember trigonometry values using reference triangles.
  • Creation of a table with sine, cosine, and tangent values at specific angles.
  • Use of special right triangles (30-60-90 and 45-45-90) for calculating trigonometric functions.
  • Introduction of the SOHCAHTOA mnemonic for sine, cosine, and tangent ratios.

Trigonometry Table Values

  • Angles: 0°, 30° (π/6), 45° (π/4), 60° (π/3), 90° (π/2)
  • Sine Values:
    • 0°: 0
    • 30°: 1/2
    • 45°: √2/2
    • 60°: √3/2
    • 90°: 1
  • Cosine Values:
    • Reverse order of sine values, 0°: 1 to 90°: 0
  • Tangent Values:
    • Calculated as sine divided by cosine
    • 0°: 0
    • 30°: √3/3
    • 45°: 1
    • 60°: √3
    • 90°: Undefined

Reference Triangles

30-60-90 Triangle

  • Side Lengths: Across 30° is 1, across 90° is 2, across 60° is √3
  • Using SOHCAHTOA:
    • Sine 30°: Opposite/Hypotenuse = 1/2
    • Cosine 30°: Adjacent/Hypotenuse = √3/2
    • Tangent 30°: Opposite/Adjacent, rationalize to √3/3
    • Tangent 60°: Opposite/Adjacent = √3
    • Sine 60°: Opposite/Hypotenuse = √3/2

45-45-90 Triangle

  • Side Lengths: Both legs are 1, hypotenuse is √2
  • Using SOHCAHTOA:
    • Sine 45°: Opposite/Hypotenuse, rationalize to √2/2
    • Cosine 45°: Same as sine 45° = √2/2
    • Tangent 45°: Opposite/Adjacent = 1

Reciprocal Functions

  • Secant (sec): Reciprocal of cosine
    • sec 60° = 1/cos 60° = 2
  • Cosecant (csc): Reciprocal of sine
    • csc 60° = 1/sin 60°, rationalize to 2√3/3
  • Cotangent (cot): Reciprocal of tangent
    • cot 60° = 1/tan 60°, rationalize to √3/3

Conclusion

  • Explanation of the usefulness of these triangles and methods in evaluating trigonometric functions.
  • Encouragement to subscribe, like, and comment on the video.