Coconote
AI notes
AI voice & video notes
Try for free
📐
Memorization Techniques for Trigonometry
Apr 26, 2025
Trigonometry Values and Memorization Techniques
Overview
Explanation of how to remember trigonometry values using reference triangles.
Creation of a table with sine, cosine, and tangent values at specific angles.
Use of special right triangles (30-60-90 and 45-45-90) for calculating trigonometric functions.
Introduction of the SOHCAHTOA mnemonic for sine, cosine, and tangent ratios.
Trigonometry Table Values
Angles
: 0°, 30° (π/6), 45° (π/4), 60° (π/3), 90° (π/2)
Sine Values
:
0°: 0
30°: 1/2
45°: √2/2
60°: √3/2
90°: 1
Cosine Values
:
Reverse order of sine values, 0°: 1 to 90°: 0
Tangent Values
:
Calculated as sine divided by cosine
0°: 0
30°: √3/3
45°: 1
60°: √3
90°: Undefined
Reference Triangles
30-60-90 Triangle
Side Lengths
: Across 30° is 1, across 90° is 2, across 60° is √3
Using SOHCAHTOA
:
Sine 30°
: Opposite/Hypotenuse = 1/2
Cosine 30°
: Adjacent/Hypotenuse = √3/2
Tangent 30°
: Opposite/Adjacent, rationalize to √3/3
Tangent 60°
: Opposite/Adjacent = √3
Sine 60°
: Opposite/Hypotenuse = √3/2
45-45-90 Triangle
Side Lengths
: Both legs are 1, hypotenuse is √2
Using SOHCAHTOA
:
Sine 45°
: Opposite/Hypotenuse, rationalize to √2/2
Cosine 45°
: Same as sine 45° = √2/2
Tangent 45°
: Opposite/Adjacent = 1
Reciprocal Functions
Secant (sec)
: Reciprocal of cosine
sec 60° = 1/cos 60° = 2
Cosecant (csc)
: Reciprocal of sine
csc 60° = 1/sin 60°, rationalize to 2√3/3
Cotangent (cot)
: Reciprocal of tangent
cot 60° = 1/tan 60°, rationalize to √3/3
Conclusion
Explanation of the usefulness of these triangles and methods in evaluating trigonometric functions.
Encouragement to subscribe, like, and comment on the video.
📄
Full transcript