📐

Understanding Polynomial Factoring Techniques

Aug 27, 2024

Factoring Polynomials

Introduction

  • Focus on how to factor polynomials
  • Start with simple examples

Factoring Simple Expressions

  • Example: 6x - 12

    • GCF: 6
    • Result: 6(x - 2)
  • Example: 3x³ - 9x²

    • GCF: 3x²
    • Result: 3x²(x - 3)
  • Example: 4x² - 12x

    • GCF: 4x
    • Result: 4x(x - 3)

Factoring Trinomials

  • When the leading coefficient is 1:

    • Find two numbers that:
      • Multiply to the constant term
      • Add to the linear coefficient
  • Example: x² + 7x + 12

    • Two numbers: 3 and 4
    • Result: (x + 3)(x + 4)
  • Example: x² + 2x - 15

    • Two numbers: 5 and -3
    • Result: (x + 5)(x - 3)
  • Example: 2x² - 6x - 56

    • Factor out GCF: 2
    • Resulting trinomial: x² - 3x - 28
    • Two numbers: -7 and 4
    • Result: 2(x - 7)(x + 4)

Factoring with GCF

  • Example: 3x² - 18x + 24
    • GCF: 3
    • Resulting trinomial: x² - 6x + 8
    • Two numbers: -4 and -2
    • Result: 3(x - 4)(x - 2)

Difference of Perfect Squares

  • Form: x² - a²
    • Example: x² - 16
      • Result: (x + 4)(x - 4)
    • Example: x² - 64
      • Result: (x + 8)(x - 8)

Special Cases with Leading Coefficient > 1

  • Example: 2x² - 5x - 3

    • No GCF
    • Multiply leading coefficient and constant term: -6
    • Two numbers: -6 and 1
    • Replace and factor by grouping
  • Example: 6x² + x - 15

    • Multiply leading coefficient and constant term: -90
    • Two numbers: 10 and -9
    • Factor by grouping: 3(2x - 3)(x + 5)

Factoring Polynomials with Four Terms

  • Example: 3x³ - 2x² - 12x + 8
    • Group terms based on similar coefficients
    • Factor out GCF: x²(3x - 2) and -4(3x - 2)
    • Result: (3x - 2)(x² - 4)
    • Factor x² - 4 as (x + 2)(x - 2)

Summary

  • Factoring involves finding GCF, grouping, and using methods for special cases like perfect squares.
  • Practice and understanding the principles of factoring will prepare for more complex polynomials.
  • For more example problems, check links in the description section.