馃К

Overview of Quantum Physics Concepts

Aug 18, 2024

Quantum Physics Lecture Notes

Introduction

  • Instructor: Sanju Badhe, K.J. Somaya Institute of Engineering and Information Technology
  • Topics Covered:
    • De Broglie hypothesis of matter waves
    • Heisenberg uncertainty principle
    • Schrodinger's equations
  • Structure of the Lecture Series:
    • Introduction to matter waves
    • Properties of matter waves
    • Wave packet concepts
    • Heisenberg uncertainty principle
    • Schrodinger's equations (time-dependent and time-independent)
    • Applications of quantum physics (quantum coding)

Black Body Radiation

  • Concept: First introduced by Max Planck to explain black body radiation.
    • Black Body: Absorbs 99.9% of incident radiation; designed as a hollow sphere with a narrow hole coated in carbon black.
  • Radiation Emission: After absorbing radiation, it emits radiation through the hole characterized by all wavelengths.
  • Intensity vs. Wavelength Curve:
    • Higher wavelengths have low intensity; shorter wavelengths have more intensity.
    • Peak wavelength (位_max) is where intensity is maximum.
  • Temperature Dependency:
    • As temperature increases, 位_max shifts left (toward shorter wavelengths). Explained by Wien鈥檚 Displacement Law:
      • 位_max is inversely proportional to temperature.
  • Limitations of Previous Laws:
    • Wien's Law: only explains shorter wavelengths.
    • Rayleigh-Jeans Law: explains longer wavelengths but fails at shorter wavelengths.

Planck's Radiation Law

  • Planck's Proposal: Radiated energy depends on frequency, formulated as E = h谓 (where h is Planck's constant).
  • Average Energy Calculation:
    • Average energy using Boltzmann distribution:
      [ E_{avg} = \frac{h谓}{e^{\frac{h谓}{kT}} - 1} ]
    • Resulting Planck's radiation law: [ \rho v = \frac{8蟺h谓^3}{c^3} \cdot \frac{1}{e^{\frac{h谓}{kT}} - 1} ]_

Dual Nature of Light

  • Einstein's Contribution: Used Planck's theory to explain the photoelectric effect, confirming light's dual nature as both particle and wave.
  • Macroscopic vs. Microscopic: Classical mechanics applies to larger particles; quantum mechanics needed for microscopic particles.

De Broglie Hypothesis

  • Main Assertion: "There is a wave associated with every moving particle."
    • Wavelength equation: [ 位 = \frac{h}{p} ] (where p = momentum = mv).
  • Justification:
    • Supported by Planck's and Einstein's theories.
    • Relates to Bohr's postulates about quantized angular momentum in electrons.

Experimental Verification: Davison-Germer Experiment

  • Setup: Electron gun with tungsten filament; electrons produced via thermionic emission.
  • Diffraction Grating: Nickel crystal acts as a grating for electrons.
  • Findings:
    • Diffraction pattern confirmed existence of wave associated with electrons.
    • Two peaks in the intensity graph indicated wave behavior.
  • Calculations:
    • Wavelength calculated using de Broglie relation and compared to Bragg's Law.
    • Results from both methods matched, confirming de Broglie hypothesis validity.

Conclusion

  • Key Takeaways:
    • De Broglie hypothesis successfully introduces wave-particle duality for all matter, not just photons.
    • Experimental verification supports both parts of the hypothesis.
  • Next Sessions: Numerical problems on de Broglie hypothesis, Heisenberg uncertainty principle, and Schrodinger equations.

Additional Notes

  • Planck awarded Nobel Prize in 1918 for his contributions.
  • Matter waves are not electromagnetic; they can propagate in a vacuum and are associated with all types of particles.
  • Phase velocity of matter waves can exceed the speed of light.

Call to Action

  • Encourage subscribing to the channel for updates on future lectures.