Coconote
AI notes
AI voice & video notes
Try for free
📈
Graphing Techniques for Exponential Functions
May 25, 2025
Lecture Notes: Graphing Exponential Functions
Introduction to Exponential Functions
Focus on graphing exponential functions.
Specific focus on functions with base 2 and later base e.
Basic Function Example
Function:
( y = 2^x )
Graphing Steps:
Create a table of values for x.
Choose x-values: 0 and 1.
Calculate corresponding y-values:
( 2^0 = 1 )
( 2^1 = 2 )
Plot Points:
(0, 1) and (1, 2).
Horizontal Asymptote:
y = 0 (x-axis).
Domain:
( (-\infty, \infty) )
Range:
( (0, \infty) )
Example with Horizontal Shift
Function:
( y = 3^{x+1} - 2 )
Shift:
Down 2 units ((-2)).
Left 1 unit ((x+1)).
New x-values after shift:
-1 and 0.
Calculate y-values:
For ( x = -1: y = 1 )
For ( x = 0: y = 1 )
Horizontal Asymptote:
y = -2.
Domain:
( (-\infty, \infty) )
Range:
( (-2, \infty) )
Base e Function Example
Function:
( y = e^x - 1 )
Base e Approximation:
( e \approx 2.7 )
Choose x-values:
0 and 1.
Calculate y-values:
( x = 0: y = 0 )
( x = 1: y \approx 1.7 )
Horizontal Asymptote:
y = -1.
Domain:
( (-\infty, \infty) )
Range:
( (-1, \infty) )
Function with Reflection
Function:
( y = 3 - e^{x-2} )
Horizontal Shift:
Right 2 units.
New x-values:
2 and 3.
Horizontal Asymptote:
y = 3.
Reflection:
Due to the negative sign.
Calculate y-values:
( x = 2: y = 2 )
( x = 3: y \approx 0.3 )
Domain:
( (-\infty, \infty) )
Range:
( (-\infty, 3) )
Summary
The domain for exponential functions is generally ( (-\infty, \infty) ).
The range depends on the horizontal asymptote and any transformations applied to the function.
Understanding horizontal shifts and reflections is key to correctly graphing exponential functions.
📄
Full transcript