May 22, 2024
x + y = 4, x^2 + y^2 = 9).r = 4, θ = π/3, r = 7sinθ).Example: x = 8
x = rcos(θ).8 = rcos(θ)r = 8 / cos(θ)r = 8cos^(-1)(θ) or 8sec(θ).Example: y = 5
y = rsin(θ).5 = rsin(θ)r = 5 / sin(θ)r = 5csc(θ).Example: 5x + 4y = 8
x = rcos(θ) and y = rsin(θ).5rcos(θ) + 4rsin(θ) = 8r(5cos(θ) + 4sin(θ)) = 8r = 8 / (5cos(θ) + 4sin(θ))Example: x^2 + y^2 = 16
x^2 + y^2 = r^2.r^2 = 16r = 4Example: (x - 3)^2 + y^2 = 9
x^2 - 6x + 9 + y^2 = 9x^2 + y^2 - 6x = 0r^2 - 6rcos(θ) = 0r(r - 6cos(θ)) = 0r = 0 or r = 6cos(θ)Example: x^2 + (y + 4)^2 = 16
x^2 + y^2 + 8y + 16 = 16x^2 + y^2 + 8y = 0r^2 + 8rsin(θ) = 0r(r + 8sin(θ)) = 0r = 0 or r = -8sin(θ)Example: y^2 = 4x
x = rcos(θ) and y = rsin(θ).(rsin(θ))^2 = 4rcos(θ)r^2sin^2(θ) = 4rcos(θ)r(sin^2(θ) - 4cos(θ)) = 0r = 0 or r = 4cos(θ)/sin^2(θ)r = 4cot(θ)csc(θ)Example: x^2 = 8y
x = rcos(θ) and y = rsin(θ).r^2cos^2(θ) = 8rsin(θ)rcos^2(θ) = 8sin(θ)r = 8tan(θ)sec(θ)Example: x^2 + y^2 = 6x + 4y
x = rcos(θ) and y = rsin(θ).r^2 = 6rcos(θ) + 4rsin(θ)r = 6cos(θ) + 4sin(θ)Example: y = √3x
x = rcos(θ) and y = rsin(θ).rsin(θ) = √3rcos(θ)tan(θ) = √3θ = π/3x and y with their polar equivalents.r and θ.r whenever possible.r = 0) may be valid but are sometimes omitted.The conversion between rectangular and polar equations relies on a solid understanding of trigonometric identities and algebraic manipulation. Practice with various examples to master the technique.