Coconote
AI notes
AI voice & video notes
Try for free
📐
Understanding Exact Values in Trigonometry
Mar 20, 2025
Lecture Notes: Finding Exact Values of Trig Functions
Special Right Triangles
30-60-90 Triangle
Sides:
Across 30°: 1
Across 60°: ( \sqrt{3} )
Hypotenuse: 2
45-45-90 Triangle
Sides:
Across 45°: 1 (both sides)
Across 90°: ( \sqrt{2} )
SOHCAHTOA
Sine Ratio:
Opposite / Hypotenuse
Cosine Ratio:
Adjacent / Hypotenuse
Tangent Ratio:
Opposite / Adjacent
Examples of Finding Exact Values
Example 1: ( \sin(30^\circ) )
Formula: Opposite / Hypotenuse
( \sin(30^\circ) = \frac{1}{2} )
Example 2: ( \cos(\frac{5\pi}{6}) )
Convert radians to degrees:
( \frac{5\pi}{6} \times \frac{180}{\pi} = 150^\circ )
150° is in quadrant 2, reference angle is 30°.
Cosine is adjacent/hypotenuse:
( \cos(150^\circ) = \frac{-\sqrt{3}}{2} )
Example 3: ( \tan(\frac{\pi}{6}) )
Convert radians to degrees:
( \frac{180}{6} = 30^\circ )
( \tan(30^\circ) = \frac{1}{\sqrt{3}} )
Rationalized: ( \frac{\sqrt{3}}{3} )
Example 4: ( \cos(240^\circ) )
Reference angle is 60° in quadrant 3.
Cosine is adjacent/hypotenuse:
( \cos(240^\circ) = \frac{-1}{2} )
Example 5: ( \tan(-45^\circ) )
Negative angle, reference angle 45° in quadrant 4.
( \tan(-45^\circ) = -1 )
Example 6: ( \sin(\frac{10\pi}{3}) )
Convert radians to degrees:
( \frac{10\pi}{3} \times \frac{180}{\pi} = 600^\circ )
Coterminal angle: 600° - 360° = 240°
( \sin(240^\circ) = \frac{-\sqrt{3}}{2} )
Handling Large or Negative Angles
For angles > 360°, subtract 360° until 0° to 360°.
For negative angles, add 360° until 0° to 360°.
Conclusion
Use special triangles and reference angles to find exact trig values.
Apply SOHCAHTOA to determine sine, cosine, and tangent values using triangle relationships.
📄
Full transcript