Jul 22, 2024
a and b.r and height dx.V = \pi r^2 ha to b.
V = \pi \int_{a}^{b} r^2(x) dxy = \sqrt{x}, bounds x = 0 to x = 4.
r(x) = \sqrt{x}V = \pi \int_{0}^{4} (\sqrt{x})^2 dx
V = \pi \int_{0}^{4} x dx
V = \pi [\frac{x^2}{2}]_{0}^{4}
V = 8\pic and d.c to d.
V = \pi \int_{c}^{d} r^2(y) dyy = x^2, bounds y = 0 to y = 4.
r(y) = \sqrt{y} (since y = x^2)V = \pi \int_{0}^{4} (\sqrt{y})^2 dy
V = \pi \int_{0}^{4} y dy
V = \pi [\frac{y^2}{2}]_{0}^{4}
V = 8\piy = \frac{1}{x}, bounds x = 1 to x = 3.r(x) = \frac{1}{x}.V = \pi \int_{1}^{3} (\frac{1}{x})^2 dx
V = \pi \int_{1}^{3} x^{-2} dx
V = \pi [-\frac{1}{x}]_{1}^{3}
V = \pi [-\frac{1}{3} - (-1)]
V = \frac{2\pi}{3}y = x^{\frac{2}{3}}, bounds y = 0 to y = 1.r(y) = y^{\frac{3}{2}}V = \pi \int_{0}^{1} (y^{\frac{3}{2}})^2 dy
V = \pi \int_{0}^{1} y^3 dy
V = \pi [\frac{y^4}{4}]_{0}^{1}
V = \frac{\pi}{4}dx for x-axis and dy for y-axis).