βž—

Understanding Fraction Operations

Nov 19, 2024

Lecture on Fractions: Addition, Subtraction, Multiplication, and Division

Adding Fractions

  • Example 1:

    • Add (\frac{3}{5} + \frac{4}{7})
    • Common denominator: 35 (5 x 7)
    • Calculation:
      • (3 \times 7 = 21)
      • (4 \times 5 = 20)
      • (21 + 20 = 41)
    • Result: (\frac{41}{35})
  • Example 2:

    • Subtract (\frac{7}{8} - \frac{2}{9})
    • Common denominator: 72 (8 x 9)
    • Calculation:
      • (7 \times 9 = 63)
      • (8 \times 2 = 16)
      • (63 - 16 = 47)
    • Result: (\frac{47}{72})

Adding and Subtracting Multiple Fractions

  • Example:

    • Calculate (\frac{3}{4} + \frac{5}{3} - \frac{7}{2})
    • Identify Least Common Denominator (LCD): 12
    • Multiplication for each fraction to get the same denominator:
      • (\frac{3}{4} \to \frac{9}{12} (\times 3))
      • (\frac{5}{3} \to \frac{20}{12} (\times 4))
      • (\frac{7}{2} \to \frac{42}{12} (\times 6))
    • Combine numerators:
      • (9 + 20 - 42 = -13)
    • Result: (-\frac{13}{12})
  • Practice Example:

    • Calculate (\frac{8}{5} - \frac{2}{3} + \frac{9}{4})
    • Use common denominator: 60
    • Multiplication:
      • (\frac{8}{5} \to \frac{96}{60} (\times 12))
      • (\frac{2}{3} \to \frac{40}{60} (\times 20))
      • (\frac{9}{4} \to \frac{135}{60} (\times 15))
    • Combine numerators:
      • (96 - 40 + 135 = 191)
    • Result: (\frac{191}{60})

Multiplying Fractions

  • Process: Multiply numerators and denominators across fractions.

  • Example:

    • Multiply (\frac{3}{5} \times \frac{7}{2})
    • Result: (\frac{21}{10})
  • Simplifying Larger Numbers:

    • Example: Multiply (\frac{24}{30} \times \frac{45}{27})
    • Break numbers down:
      • 24 = 6 x 4, 27 = 9 x 3
      • 45 = 9 x 5, 30 = 6 x 5
    • Cancel common factors (5, 9, 6)
    • Result: (\frac{4}{3})
  • Practice Example:

    • Multiply (\frac{56}{77} \times \frac{35}{40})
    • Simplify:
      • 56 = 8 x 7, 77 = 11 x 7
      • 35 = 7 x 5, 40 = 8 x 5
    • Cancel common factors (8, 7, 5)
    • Result: (\frac{7}{11})

Dividing Fractions

  • Keep, Change, Flip Method:

    • "Keep" the first fraction, "Change" division to multiplication, "Flip" the second fraction.
  • Example:

    • Divide (\frac{8}{5} \div \frac{12}{7})
    • Keep: (\frac{8}{5}), Change: (\div \to \times), Flip: (\frac{7}{12})
    • Simplify before multiplying:
      • Cancel common factor (4)
      • Result: (\frac{14}{15})
  • Another Example:

    • Divide (\frac{4}{3} \div \frac{9}{5})
    • Result: (\frac{20}{27})
  • Complex Example:

    • Divide (\frac{36}{54} \div \frac{64}{48})
    • Simplify using Keep, Change, Flip:
      • Cancel common factors (9, 16, 4)
      • Simplified Result: (\frac{1}{2})