Understanding Radical Expressions Multiplication

May 7, 2025

Lecture Notes: Multiplying Radical Expressions

Key Concepts

  • Radical Expressions: An expression that contains a square root, cube root, etc.
  • Index Number: The small number outside and to the left of the radical sign which indicates the degree of the root.

Basic Multiplication of Radicals

  • Rule: If radicals have the same index, multiply the numbers inside the radicals.
    • Example: ( \sqrt{3} \times \sqrt{5} = \sqrt{15} )

Simplifying Radicals After Multiplication

  1. Example: ( \sqrt{6} \times \sqrt{15} )

    • Multiply: ( 6 \times 15 = 90 )
    • Simplify: ( \sqrt{90} )
      • Break down: ( 90 = 9 \times 10 )
      • ( \sqrt{9} = 3 )
      • Result: ( 3\sqrt{10} )
  2. Example: ( \sqrt{8} \times \sqrt{6} )

    • Multiply: ( 8 \times 6 = 48 )
    • Simplify: ( \sqrt{48} )
      • Break down: ( 48 = 16 \times 3 )
      • ( \sqrt{16} = 4 )
      • Result: ( 4\sqrt{3} )

Simplifying Before Multiplication

  • Useful for large numbers.
  • Example: ( 150 \times 30 )
    • Simplify: ( 150 = 15 \times 10 ), ( 30 = 15 \times 2 )
    • ( 15 \times 15 = 225 )
    • ( \sqrt{225} = 15 )
    • ( 2 \times 10 = 20 ) (( \sqrt{20} = 2\sqrt{5} ))
    • Result: ( 30\sqrt{5} )

Cube Roots

  1. Example: Cube root of ( 18 \times 6 )
    • Multiply: ( 18 \times 6 = 108 )
    • Simplify: ( 108 = 27 \times 4 )
    • ( \text{Cube root of } 27 = 3 )
    • Result: ( 3\sqrt[3]{4} )

Radicals with Variables

  • Example: ( \sqrt{18x^3} \times \sqrt{72x^5} )
    • ( 18 = 9 \times 2 ), ( 72 = 36 \times 2 )
    • ( x^3 \times x^5 = x^8 )
    • ( 9 = 3^2 ), ( 36 = 6^2 )
    • Result: ( 36x^4 )

Advanced Expressions

  • Fourth root and cube root expressions
    • Example: Fourth root of ( 18a^{11}b^{15} \times 27a^{13}b^9 )
      • Simplify using factorization and extracting multiples of four.
      • Result: ( 3a^6b^6\sqrt[4]{6} )

Special Cases

  • Perfect Square Trinomials
    • Example: ( \sqrt{x^2 + 6x + 9} )
      • Recognize as ((x+3)^2)
      • Result: ( x + 3 )

Summary

  • Multiplication of radical expressions involves either directly multiplying the numbers within the radicals or simplifying before multiplication.
  • Always look for possible simplifications using factorization of the numbers under the radical.
  • Use perfect squares or cubes to make simplifications easier.