Jun 2, 2024
sin(θ) = opposite / hypotenusecos(θ) = adjacent / hypotenusetan(θ) = opposite / adjacentcsc(θ) = 1 / sin(θ) → sin(θ) = 1 / csc(θ)sec(θ) = 1 / cos(θ) → cos(θ) = 1 / sec(θ)cot(θ) = 1 / tan(θ) → tan(θ) = 1 / cot(θ)sin(θ) = 4 / 5cos(θ) = 3 / 5tan(θ) = 4 / 3csc(θ) = 5 / 4sec(θ) = 5 / 3cot(θ) = 3 / 4tan(θ) = sin(θ) / cos(θ)cot(θ) = cos(θ) / sin(θ)sin²(θ) + cos²(θ) = 11 + cot²(θ) = csc²(θ) (divide by sin²(θ))1 + tan²(θ) = sec²(θ) (divide by cos²(θ))sin(-θ) = -sin(θ)tan(-θ) = -tan(θ)csc(-θ) = -csc(θ)cot(-θ) = -cot(θ)cos(-θ) = cos(θ)sec(-θ) = sec(θ)cos(θ) = sin(90° - θ)sin(θ) = cos(90° - θ)csc(θ) = sec(90° - θ)sec(θ) = csc(90° - θ)cot(θ) = tan(90° - θ)tan(θ) = cot(90° - θ)cos(30°) = sin(60°)sin(2θ) = 2 sin(θ) cos(θ)cos(2θ):
= cos²(θ) - sin²(θ)= 2 cos²(θ) - 1= 1 - 2 sin²(θ)tan(2θ) = 2 tan(θ) / (1 - tan²(θ))sin(θ/2) = ±√((1 - cos(θ)) / 2)cos(θ/2) = ±√((1 + cos(θ)) / 2)tan(θ/2):
= ±√((1 - cos(θ)) / (1 + cos(θ)))= (1 - cos(θ)) / sin(θ)= sin(θ) / (1 + cos(θ))sin(α ± β) = sin(α) cos(β) ± cos(α) sin(β)cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β)tan(α ± β) = (tan(α) ± tan(β)) / (1 ∓ tan(α) tan(β))sin²(θ) = (1 - cos(2θ)) / 2cos²(θ) = (1 + cos(2θ)) / 2tan²(θ) = (1 - cos(2θ)) / (1 + cos(2θ))sin(α)sin(β) = 1/2 [cos(α - β) - cos(α + β)]cos(α)cos(β) = 1/2 [cos(α - β) + cos(α + β)]sin(α)cos(β) = 1/2 [sin(α + β) + sin(α - β)]cos(α)sin(β) = 1/2 [sin(α + β) - sin(α - β)]sin(α) + sin(β) = 2 sin((α + β)/2) cos((α - β)/2)sin(α) - sin(β) = 2 cos((α + β)/2) sin((α - β)/2)cos(α) + cos(β) = 2 cos((α + β)/2) cos((α - β)/2)cos(α) - cos(β) = -2 sin((α + β)/2) sin((α - β)/2)sin(A) / a = sin(B) / b = sin(C) / cc² = a² + b² - 2ab cos(C)(1/2)ab sin(C)S = (a + b + c) / 2Area = √(S(S - a)(S - b)(S - c))(a - b) / (a + b) = tan[(1/2)(A - B)] / tan[(1/2)(A + B)]