Function Transformations

Jul 18, 2024

Function Transformations

Vertical Shifts

  • Function: f(x) + 2
    • Shift: Moves the graph up 2 units
  • Function: f(x) - 3
    • Shift: Moves the graph down 3 units

Horizontal Shifts

  • Function: f(x - 4)
    • Shift: Moves the graph 4 units to the right
  • Function: f(x + 3)
    • Shift: Moves the graph 3 units to the left

Reflections

  • Function: -f(x)
    • Reflection: Over the x-axis
  • Function: f(-x)
    • Reflection: Over the y-axis
  • Function: -f(-x)
    • Reflection: Over the origin

Scaling

  • Vertical Stretch: 2f(x)
    • Stretches the graph vertically by a factor of 2
  • Vertical Shrink: (1/2)f(x)
    • Shrinks the graph vertically by a factor of 2
  • Horizontal Shrink: f(2x)
    • Shrinks the graph horizontally by a factor of 2
  • Horizontal Stretch: f(1/2 x)
    • Stretches the graph horizontally by a factor of 2

Examples

Example 1: Parabola (f(x) = x²)

  • Function: x² + 3
    • Transformation: Vertical shift up 3 units
  • Function: x² - 2
    • Transformation: Vertical shift down 2 units

Example 2: Absolute Value (f(x) = |x|)

  • Function: |x + 2|
    • Transformation: Horizontal shift left 2 units
  • Function: |x - 3|
    • Transformation: Horizontal shift right 3 units

Example 3: Square Root (f(x) = √x)

  • Function: -√x
    • Transformation: Reflects over the x-axis
  • Function: √-x
    • Transformation: Reflects over the y-axis
  • Function: -√-x
    • Transformation: Reflects over the origin

Graphing Using Points

Example: Absolute Value Function

  • Functions:
    • y = |x|
    • y = 2|x|
    • y = 1/2|x|
  • Key Points: (x, y)
    • |x|: (0,0), (1,1), (2,2), (-1,1), (-2,2)
    • 2|x|: (0,0), (1,2), (2,4), (-1,2), (-2,4)
    • 1/2|x|: (0,0), (1,0.5), (2,1), (-1,0.5), (-2,1)
  • Transformation Summary:
    • Vertical Stretch: Multiples y values by factor of 2
    • Vertical Shrink: Halves y values

Quadrant Translations by Sign

  • Quadrant 1: (+x, +y)
  • Quadrant 2: (-x, +y)
  • Quadrant 3: (-x, -y)
  • Quadrant 4: (+x, -y)
  • Verify direction by setting inside of function to zero

Additional Examples

Example 1: Translate & Graph

  • Function: (x - 2)² + 3
    • Transformation: Horizontal shift right 2, vertical shift up 3

Example 2: Translate & graph Negative Parabola

  • Function: 3 - (x + 2)²
    • Transformation: Vertical shift up 3, horizontal shift left 2
    • Result: Parabola opens downwards

Example 3: Translate & Reflect Square Root Function

  • Function: 4 - √(3 - x)
    • Transformation: Reflects over x-axis and y-axis, horizontal shift right 3
    • Points:
      • (3, 4)
      • (2, 3)
      • (-1, 2)
      • (-6, 1)