Calculating Area of a Triangle from Vertices

Jul 26, 2024

Calculating the Area of a Triangle from Vertices

Introduction

  • The area of a triangle can be calculated using the three vertices.

Formula

  • Formula: ( \text{Area} = \frac{1}{2} \left| \text{det}(A) \right| )
    • Where ( A ) is a 3x3 matrix.

Defining Matrix A

  • Matrix A is constructed as follows:
    • First Column: ( x_1, x_2, x_3 )
    • Second Column: ( y_1, y_2, y_3 )
    • Third Column: Three ones.

Example 1

  • Given vertices: (1, 1), (4, 1), (4, 5)
  • Matrix A: [ \begin{bmatrix} 1 & 1 & 1 \ 4 & 1 & 1 \ 4 & 5 & 1 \end{bmatrix} ]

Evaluating the Determinant

  • Calculate determinant:
    1. From top left:
      • ( 1 \times 1 \times 1 = 1 )
      • ( 1 \times 1 \times 4 = 4 )
      • ( 1 \times 4 \times 5 = 20 )
    2. From bottom left:
      • ( 4 \times 1 \times 1 = 4 )
      • ( 5 \times 1 \times 1 = 5 )
      • ( 1 \times 4 \times 1 = 4 )
  • Add values:
    • Top: ( 1 + 4 + 20 = 25 )
    • Bottom: ( 4 + 5 + 4 = 13 )
  • ( ext{Det}(A) = 25 - 13 = 12 )

Area Calculation

  • Area = ( \frac{1}{2} \times 12 = 6 ) square units
  • Verification
    • Right triangle with base = 3, height = 4.
    • Area = ( \frac{1}{2} \times 3 \times 4 = 6 )

Example 2

  • New vertices: (2, 3), (5, 7), (10, -5)
  • Matrix A: [ \begin{bmatrix} 2 & 3 & 1 \ 5 & 7 & 1 \ 10 & -5 & 1 \end{bmatrix} ]

Evaluating the Determinant

  • Calculate determinant:
    1. Multiply from top left:
      • ( 2 \times 7 \times 1 = 14 )
      • ( 3 \times 1 \times 10 = 30 )
      • ( 1 \times 5 \times -5 = -25 )
    2. Multiply from bottom left:
      • ( 10 \times 7 \times 1 = 70 )
      • ( -5 \times 1 \times 2 = -10 )
      • ( 1 \times 5 \times 3 = 15 )
  • Add values:
    • Top: ( 14 + 30 - 25 = 19 )
    • Bottom: ( 70 - 10 + 15 = 75 )
  • ( ext{Det}(A) = 19 - 75 = -56 )

Area Calculation

  • Area = ( \frac{1}{2} \times | -56 | = 28 ) square units

Verification by Graphing

  • Plotting points leads to a scaling triangle.

Alternative Method: Heron's Formula

  1. Calculate side lengths.
  2. Determine semi-perimeter ( S ).
  3. Calculate area using: [ \text{Area} = \sqrt{S(S-a)(S-b)(S-c)} ]

Conclusion

  • The easiest way to calculate the area of a triangle from vertices is through the determinant of the 3x3 matrix and dividing by 2.