Coconote
AI notes
AI voice & video notes
Try for free
🔺
Calculating Area of a Triangle from Vertices
Jul 26, 2024
Calculating the Area of a Triangle from Vertices
Introduction
The area of a triangle can be calculated using the three vertices.
Formula
Formula: ( \text{Area} = \frac{1}{2} \left| \text{det}(A) \right| )
Where ( A ) is a 3x3 matrix.
Defining Matrix A
Matrix A is constructed as follows:
First Column: ( x_1, x_2, x_3 )
Second Column: ( y_1, y_2, y_3 )
Third Column: Three ones.
Example 1
Given vertices: (1, 1), (4, 1), (4, 5)
Matrix A: [ \begin{bmatrix} 1 & 1 & 1 \ 4 & 1 & 1 \ 4 & 5 & 1 \end{bmatrix} ]
Evaluating the Determinant
Calculate determinant:
From top left:
( 1 \times 1 \times 1 = 1 )
( 1 \times 1 \times 4 = 4 )
( 1 \times 4 \times 5 = 20 )
From bottom left:
( 4 \times 1 \times 1 = 4 )
( 5 \times 1 \times 1 = 5 )
( 1 \times 4 \times 1 = 4 )
Add values:
Top: ( 1 + 4 + 20 = 25 )
Bottom: ( 4 + 5 + 4 = 13 )
( ext{Det}(A) = 25 - 13 = 12 )
Area Calculation
Area = ( \frac{1}{2} \times 12 = 6 ) square units
Verification
Right triangle with base = 3, height = 4.
Area = ( \frac{1}{2} \times 3 \times 4 = 6 )
Example 2
New vertices: (2, 3), (5, 7), (10, -5)
Matrix A: [ \begin{bmatrix} 2 & 3 & 1 \ 5 & 7 & 1 \ 10 & -5 & 1 \end{bmatrix} ]
Evaluating the Determinant
Calculate determinant:
Multiply from top left:
( 2 \times 7 \times 1 = 14 )
( 3 \times 1 \times 10 = 30 )
( 1 \times 5 \times -5 = -25 )
Multiply from bottom left:
( 10 \times 7 \times 1 = 70 )
( -5 \times 1 \times 2 = -10 )
( 1 \times 5 \times 3 = 15 )
Add values:
Top: ( 14 + 30 - 25 = 19 )
Bottom: ( 70 - 10 + 15 = 75 )
( ext{Det}(A) = 19 - 75 = -56 )
Area Calculation
Area = ( \frac{1}{2} \times | -56 | = 28 ) square units
Verification by Graphing
Plotting points leads to a scaling triangle.
Alternative Method: Heron's Formula
Calculate side lengths.
Determine semi-perimeter ( S ).
Calculate area using: [ \text{Area} = \sqrt{S(S-a)(S-b)(S-c)} ]
Conclusion
The easiest way to calculate the area of a triangle from vertices is through the determinant of the 3x3 matrix and dividing by 2.
📄
Full transcript