Understanding Function Domains in Mathematics

Jan 27, 2025

Finding the Domain of Functions

Linear Functions

  • Example: ( f(x) = 2x - 7 )
  • The domain of linear functions is all real numbers ((\mathbb{R})).
  • In interval notation: ((-\infty, +\infty)).

Polynomial Functions

  • Includes quadratic functions (e.g., (x^2 + 3x - 5)) and other polynomial forms (e.g., (2x^3 - 5x^2 + 7x - 3)).
  • The domain is all real numbers ((\mathbb{R})).

Rational Functions

  • Function has the form (\frac{p(x)}{q(x)}).
  • Domain: All real numbers except where the denominator is zero.

Example: (\frac{5}{x - 2})

  • Set denominator not equal to zero: (x - 2 \neq 0)
  • Domain: ((-\infty, 2) \cup (2, +\infty))

Example: (\frac{3x - 8}{x^2 - 9x + 20})

  • Factor denominator: ((x - 4)(x - 5) \neq 0)
  • Domain: ((-\infty, 4) \cup (4, 5) \cup (5, +\infty))

Square Root Functions

  • Set the expression inside the square root greater than or equal to zero.

Example: (\sqrt{x - 4})

  • Solve (x - 4 \geq 0) โ†’ (x \geq 4)
  • Domain: ([4, +\infty))

Example: (\sqrt{x^2 + 3x - 28})

  • Factor: ((x - 4)(x + 7))
  • Solve: (x \leq -7) or (x \geq 4)
  • Domain: ((-\infty, -7] \cup [4, +\infty))

Functions with Square Roots in Denominator

  • The expression inside the square root must be greater than zero.
  • Example: (\frac{1}{\sqrt{x + 3}}) โ†’ (x + 3 > 0) โ†’ (x > -3)
  • Domain: ((-3, +\infty))

Fractions with Square Roots in Numerator and Denominator

  • Set the numerator expression (\geq 0) and the denominator expression (> 0).
  • Example: (\frac{\sqrt{x + 3}}{\sqrt{x^2 - 16}})
    • Numerator: (x + 3 \geq 0) โ†’ (x \geq -3)
    • Denominator: (x^2 - 16 > 0)
    • Factor: ((x + 4)(x - 4))
    • Check signs between intervals.
    • Domain: ((4, +\infty))

Summary

  • Linear & Polynomial functions have a domain of all real numbers.
  • Rational functionsโ€™ domain excludes values that make the denominator zero.
  • Square root functions' domain is determined by setting expressions under the root (\geq 0).
  • Complex functions with square roots in the denominator have specific restrictions to ensure no division by zero.