Coconote
AI notes
AI voice & video notes
Try for free
📉
Understanding Function Transformations
Feb 25, 2025
Lecture on Functions and Transformations
Introduction
Discussion on functions and their transformations.
Focus on vertical and horizontal shifts, stretches, and reflections.
Types of Shifts
Vertical Shifts
f(x) + 2
: Vertical shift up by 2 units.
f(x) - 3
: Vertical shift down by 3 units.
Horizontal Shifts
f(x - 4)
: Horizontal shift right by 4 units.
f(x + 3)
: Horizontal shift left by 3 units.
Reflections
Negative outside: Reflects over the x-axis.
Negative inside: Reflects over the y-axis.
Negative inside and outside: Reflects over the origin.
Stretches and Shrinks
Vertical Changes
2f(x)
: Vertical stretch.
(1/2)f(x)
: Vertical shrink.
Horizontal Changes
f(2x)
: Horizontal shrink.
f((1/2)x)
: Horizontal stretch.
Examples of Transformations
Quadratic Functions
f(x) = x²
(Parent Function): Parabola.
x² + 3
: Shift up 3 units - Starting point at (0, 3).
x² - 2
: Shift down 2 units.
Absolute Value Functions
y = |x|
: Parent function.
|x + 2|
: Shift left 2 units - New point at (-2, 0).
|x - 3|
: Shift right 3 units.
Square Root Functions
y = √x
: Parent function.
-√x
: Reflect over x-axis.
√-x
: Reflect over y-axis.
Negative inside and outside: Reflect over origin.
Quadrant Analysis
Positive x, Positive y: Quadrant 1.
Positive x, Negative y: Quadrant 4.
Negative x, Positive y: Quadrant 2.
Negative x, Negative y: Quadrant 3.
Graphing Examples
y = |x|, 2|x|, (1/2)|x|
: Demonstrates vertical stretch and shrink.
x² Transformation
: Horizontal shift right 2, vertical shift up 3.
Detailed Graphing
Example: y = 3 - (x + 2)²
Horizontal shift left 2 units.
Vertical shift up 3.
Parabola opens downward due to the negative sign.
Example: y = 4 - √(3 - x)
Vertical shift up 4.
Horizontal shift right 3 units.
Reflects over origin (quadrant 3).
Parent Functions Overview
y = x
y = x²
y = x³
y = √x
y = ∛x
y = |x|
Key Takeaways
Understand the effects of adding, subtracting, and multiplying functions.
Distinguish between vertical and horizontal transformations by analyzing the function's formula.
Practice graphing transformations to reinforce understanding.
📄
Full transcript