📉

Understanding Function Transformations

Feb 25, 2025

Lecture on Functions and Transformations

Introduction

  • Discussion on functions and their transformations.
  • Focus on vertical and horizontal shifts, stretches, and reflections.

Types of Shifts

Vertical Shifts

  • f(x) + 2: Vertical shift up by 2 units.
  • f(x) - 3: Vertical shift down by 3 units.

Horizontal Shifts

  • f(x - 4): Horizontal shift right by 4 units.
  • f(x + 3): Horizontal shift left by 3 units.

Reflections

  • Negative outside: Reflects over the x-axis.
  • Negative inside: Reflects over the y-axis.
  • Negative inside and outside: Reflects over the origin.

Stretches and Shrinks

Vertical Changes

  • 2f(x): Vertical stretch.
  • (1/2)f(x): Vertical shrink.

Horizontal Changes

  • f(2x): Horizontal shrink.
  • f((1/2)x): Horizontal stretch.

Examples of Transformations

Quadratic Functions

  • f(x) = x² (Parent Function): Parabola.
  • x² + 3: Shift up 3 units - Starting point at (0, 3).
  • x² - 2: Shift down 2 units.

Absolute Value Functions

  • y = |x|: Parent function.
  • |x + 2|: Shift left 2 units - New point at (-2, 0).
  • |x - 3|: Shift right 3 units.

Square Root Functions

  • y = √x: Parent function.
  • -√x: Reflect over x-axis.
  • √-x: Reflect over y-axis.
  • Negative inside and outside: Reflect over origin.

Quadrant Analysis

  • Positive x, Positive y: Quadrant 1.
  • Positive x, Negative y: Quadrant 4.
  • Negative x, Positive y: Quadrant 2.
  • Negative x, Negative y: Quadrant 3.

Graphing Examples

  • y = |x|, 2|x|, (1/2)|x|: Demonstrates vertical stretch and shrink.
  • x² Transformation: Horizontal shift right 2, vertical shift up 3.

Detailed Graphing

Example: y = 3 - (x + 2)²

  • Horizontal shift left 2 units.
  • Vertical shift up 3.
  • Parabola opens downward due to the negative sign.

Example: y = 4 - √(3 - x)

  • Vertical shift up 4.
  • Horizontal shift right 3 units.
  • Reflects over origin (quadrant 3).

Parent Functions Overview

  • y = x
  • y = x²
  • y = x³
  • y = √x
  • y = ∛x
  • y = |x|

Key Takeaways

  • Understand the effects of adding, subtracting, and multiplying functions.
  • Distinguish between vertical and horizontal transformations by analyzing the function's formula.
  • Practice graphing transformations to reinforce understanding.