🔵

Understanding the Unit Circle and Trigonometry

Feb 23, 2025

Unit Circle and Trigonometric Functions

Introduction to the Unit Circle

  • Definition: A circle with a radius of 1.
  • Key Concept: In a unit circle, the hypotenuse of a right triangle formed at any angle is 1.

Trigonometric Functions on the Unit Circle

  • Sine (sin θ): Equal to the y-coordinate of a point on the unit circle.
  • Cosine (cos θ): Equal to the x-coordinate of a point on the unit circle.
  • Key Relationship: When radius (r) = 1, cos θ = x and sin θ = y.

Common Angles in Quadrant 1

  • 30 degrees:
    • x = ( \frac{\sqrt{3}}{2} )
    • y = ( \frac{1}{2} )
  • 45 degrees:
    • x = ( \frac{\sqrt{2}}{2} )
    • y = ( \frac{\sqrt{2}}{2} )
  • 60 degrees:
    • x = ( \frac{1}{2} )
    • y = ( \frac{\sqrt{3}}{2} )
  • 0 and 90 degrees:
    • 0 degrees: (1, 0)
    • 90 degrees: (0, 1)

Evaluating Trigonometric Functions

  • Examples:
    • sin(45) = ( \frac{\sqrt{2}}{2} )
    • cos(270) = 0
    • sin(60) = ( \frac{\sqrt{3}}{2} )
    • cos(180) = -1
    • sin(30) = ( \frac{1}{2} )

Angles Beyond Quadrant 1

  • Using Reference Angles: Angles such as 135, 225, and 315 degrees can be evaluated by understanding reference angles.
    • 135 degrees: Reference angle is 45 degrees (x negative, y positive)
    • 225 degrees: Reference angle is 45 degrees (x and y negative)
    • 315 degrees: Reference angle is 45 degrees (x positive, y negative)

Radians and the Unit Circle

  • Conversion: Ï€ radians = 180 degrees.
  • Common Radian Values:
    • Ï€/3 corresponds to 60 degrees.
    • 2Ï€/3, 4Ï€/3, and 5Ï€/3 share the reference angle of Ï€/3.

Evaluating Functions in Radians

  • Examples:
    • sin(Ï€/3) = ( \frac{\sqrt{3}}{2} )
    • cos(2Ï€/3) = -( \frac{1}{2} )
    • sin(4Ï€/3) = -( \frac{\sqrt{3}}{2} )
    • cos(5Ï€/3) = ( \frac{1}{2} )

Additional Examples

  • Evaluate:
    • sin(Ï€/6): ( \frac{1}{2} )
    • cos(5Ï€/6): -( \frac{\sqrt{3}}{2} )
    • cos(7Ï€/6): -( \frac{\sqrt{3}}{2} )
    • sin(11Ï€/6): -( \frac{1}{2} )

Conclusion

  • Key Takeaway: Knowing the angles and values in quadrant 1 allows the calculation of values in other quadrants by considering symmetry and sign changes.