🧮

Calculus 2 Integration Techniques

Sep 19, 2025

Overview

This lecture covers key integration techniques from Calculus 2, including integration by parts, trigonometric integrals, and trigonometric substitution, with step-by-step examples for each method.

Integration by Parts

  • Use integration by parts for the integral of two multiplied functions: ∫u dv = uĀ·v āˆ’ ∫v du.
  • Example: ∫x sin(x) dx. Let u = x, dv = sin(x) dx, so du = dx, v = āˆ’cos(x).
  • Solution: āˆ’x cos(x) + ∫cos(x) dx = āˆ’x cos(x) + sin(x) + C.
  • Example: ∫ln(x) dx. Let u = ln(x), dv = dx, so du = (1/x) dx, v = x.
  • Solution: x ln(x) āˆ’ ∫xĀ·(1/x) dx = x ln(x) āˆ’ x + C.

Trigonometric Integrals

  • For powers of trig functions, use identities and substitution.
  • Example: ∫cos³(x) dx. Write as ∫(cos²(x)Ā·cos(x)) dx, replace cos²(x) with 1 āˆ’ sin²(x).
  • Substitute u = sin(x), du = cos(x) dx, integrate to get sin(x) āˆ’ (1/3)sin³(x) + C.
  • For ∫cos⁵(x) sin⁓(x) dx, split cos⁵(x) as cos(x)Ā·(cos²(x))², substitute using identities and u = sin(x).
  • After expansion and integration, result is (1/5)sin⁵(x) āˆ’ (2/7)sin⁷(x) + (1/9)sin⁹(x) + C.
  • For ∫sin²(x) dx, use the half-angle identity: sin²(x) = ½(1 āˆ’ cos(2x)).
  • Integrate to get (1/2)x āˆ’ (1/4)sin(2x) + C.

Tangent and Secant Integrals

  • Example: ∫tan⁶(x) sec⁓(x) dx. Use identity sec²(x) = 1 + tan²(x), and u = tan(x).
  • Split sec⁓(x) into sec²(x)Ā·sec²(x), substitute and expand.
  • Result: (1/7)tan⁷(x) + (1/9)tan⁹(x) + C.

Trigonometric Substitution

  • Use trigonometric substitution for integrals involving √(a² āˆ’ x²), √(a² + x²), or √(x² āˆ’ a²).
  • For √(a² āˆ’ x²), let x = a sin(Īø).
  • Example: ∫√(4 āˆ’ x²)/x² dx. Substitute x = 2 sin(Īø), dx = 2 cos(Īø) dĪø.
  • Simplify using trig identities; expression becomes an integral in terms of cot²(Īø) and dĪø.
  • Integrate to get āˆ’cot(Īø) āˆ’ Īø + C; back-substitute using a reference triangle.
  • Final answer: āˆ’āˆš(4 āˆ’ x²)/x āˆ’ arcsin(x/2) + C.

Key Terms & Definitions

  • Integration by Parts — Method for integrating the product of two functions: ∫u dv = uĀ·v āˆ’ ∫v du.
  • Trigonometric Integral — Integral involving powers/products of trig functions, often solved with identities or substitution.
  • Half-Angle Identity — sin²(x) = ½(1 āˆ’ cos(2x)).
  • Trigonometric Substitution — Replacing variables with trig functions to simplify integrals containing radicals.

Action Items / Next Steps

  • Review and practice similar integration by parts and trigonometric integration problems.
  • Study and memorize key trig identities and substitution techniques.
  • Check assigned calculus video playlist for additional practice and examples.