Jul 12, 2024
a base b: b^x = a => log_b(a) = x.log_2(4) = 2; 2^2 = 4.log_2(16) = 4; 2^4 = 16.log(ab) = log(a) + log(b).log(a/b) = log(a) - log(b).log(a^b) = b*log(a).log base 10; if base not mentioned, assume 10.ln; base e.ln(x) = 2.303 * log(x).2^0 = 1; 2^1 = 2; 2^2 = 4 etc.LCM(60, 40) using prime factorization.sin ╬╕ = opposite/hypotenusecos ╬╕ = adjacent/hypotenusetan ╬╕ = opposite/adjacentsin^2╬╕ + cos^2╬╕ = 11 + tan^2╬╕ = sec^2╬╕1 + cot^2╬╕ = csc^2╬╕sin(2╬╕) = 2sin╬╕cos╬╕cos(2╬╕) = cos^2╬╕ - sin^2╬╕tan(2╬╕) = 2tan╬╕ / (1 - tan^2╬╕)d/dx [c] = 0d/dx [x^n] = nx^(n-1).d/dx [u + v] = du/dx + dv/dx.d/dx [f(g(x))] = f'(g(x)) * g'(x).d/dx [uv] = u'v + uv'd/dx [sin x] = cos xd/dx [cos x] = -sin xd/dx [e^x] = e^x*тИл x^n dx = (x^(n+1))/(n+1) + CтИл e^x dx = e^x + CтИл sin x dx = -cos x + CтИл cos x dx = sin x + CтИл 1/x dx = ln|x| + CтИл[a to b] x dx = [x^2/2] from a to bm: If m > 0, positive slope; if m < 0, negative slope.c: y-intercept: point where graph crosses y-axis.a forms upward parabola (smiling). Negative a forms downward parabola (sad face).r.