📘

Essential Calculus Differentiation Formulas

Nov 1, 2024

Calculus: Differentiation Formulas

Derivative of a Constant

  • The derivative of a constant is always 0.

Power Rule

  • Applies to a variable raised to a constant:
    • ( f(x) = x^n ), the derivative ( f'(x) = nx^{n-1} ).
    • Examples:
      • Derivative of ( x^3 ) is ( 3x^2 ).
      • Derivative of ( x^4 ) is ( 4x^3 ).

Exponential Functions

  • Derivative of a constant raised to a variable:
    • ( f(x) = a^x ), derivative ( f'(x) = a^x \ln(a) ).
  • For a function of ( x ):
    • ( f(x) = a^u ), derivative ( f'(x) = a^u \cdot u' \cdot \ln(a) ).

Logarithmic Differentiation

  • Used for variables raised to variables.
  • Recommended resource: YouTube video on logarithmic differentiation.

Constant Multiple Rule

  • Derivative of a function times a constant:
    • ( f(x) = c \cdot g(x) ), derivative ( f'(x) = c \cdot g'(x) ).
    • Example: Derivative of ( 5x^4 ) is ( 20x^3 ).

Product Rule

  • For two functions ( u ) and ( v ):
    • ( (uv)' = u'v + uv' ).

Quotient Rule

  • For division of two functions ( u ) and ( v ):
    • ( \left(\frac{u}{v}\right)' = \frac{v u' - u v'}{v^2} ).

Chain Rule

  • For composite functions:
    • ( f(g(x)) ): derivative is ( f'(g(x)) \cdot g'(x) ).
    • If ( f(g(u)) ), it's ( f'(g(u)) \cdot g'(u) \cdot u' ).
  • Combined with Power Rule:
    • ( (f(x)^n)' = n \cdot f(x)^{n-1} \cdot f'(x) ).

Derivative of Logarithmic Functions

  • ( \log_a(u) ): derivative ( \frac{u'}{u \ln(a)} ).
  • ( \ln(u) ): derivative ( \frac{u'}{u} ).

Trigonometric Functions

  • ( \sin(u) ): derivative ( \cos(u) \cdot u' ).
  • ( \cos(u) ): derivative ( -\sin(u) \cdot u' ).
  • ( \tan(u) ): derivative ( \sec^2(u) \cdot u' ).
  • ( \csc(u), \sec(u), \cot(u) ): derivatives involve their reciprocal identities and chain rule.

Inverse Trigonometric Functions

  • ( \sin^{-1}(u) ): ( \frac{u'}{\sqrt{1-u^2}} ).
  • ( \cos^{-1}(u) ): ( -\frac{u'}{\sqrt{1-u^2}} ).
  • ( \tan^{-1}(u) ): ( \frac{u'}{1+u^2} ).
  • ( \cot^{-1}(u) ): ( -\frac{u'}{1+u^2} ).
  • ( \sec^{-1}(u) ), ( \csc^{-1}(u) ): derivatives involve complex forms.

Summary

  • Essential differentiation formulas for calculus.
  • Recommended for students preparing for derivatives tests.
  • Additional resources available in description links.