Significant Figures: Counting and Rounding
Key Concepts
- Significant Figures (Sig Figs): Measure of precision in numerical data.
- Rules for Counting Sig Figs:
- Any nonzero number is significant.
- Zeros between nonzero digits are significant.
- Leading zeros (zeros before the first nonzero digit) are not significant.
- Trailing zeros (zeros after the last nonzero digit) are significant if there's a decimal point.
Examples
126 → 3 sig figs
95 → 2 sig figs
4873 → 4 sig figs
404 → 3 sig figs (zeros between nonzero digits)
50006 → 4 sig figs
7080 → 4 sig figs (trailing zeros not counted without decimal)
8000 → 1 sig fig
800.0 → 4 sig figs (decimal makes all zeros significant)
0.153 → 3 sig figs (leading zeros not counted)
0.001008 → 4 sig figs (trailing zeros after decimal are significant)
5.070080 → 7 sig figs (all zeros after decimal are significant)
Scientific Notation
- Ignore the multiplier (e.g.,
3.06 * 10^5 has 3 sig figs).
- Examples:
2.53 * 10^4 → 3 sig figs
1.00 * 10^8 → 4 sig figs
4.20 * 10^7 → 3 sig figs
Rounding Sig Figs
- One Sig Fig: Round based on the first digit (e.g.,
4257 → 4000 if next digit < 5).
- Two Sig Figs: Consider next digits (e.g.,
4257 → 4300 because 5 rounds up).
- Three Sig Figs:
4257 → 4260 (6 rounds up).
- Four Sig Figs:
4257 → 4257 (no rounding needed as next digit is not > 5).
Combined Operations and Rounding Examples
Rounding Exercises
158.1054 to:
- One sig fig:
200
- Two sig figs:
160
- Three sig figs:
158
- Four sig figs:
158.1
- Five sig figs:
158.11
0.35047 to:
- One sig fig:
0.4
- Two sig figs:
0.35
- Three sig figs:
0.350
- Four sig figs:
0.3505
Special Cases
100 with 2 sig figs: Use scientific notation: 1.0 * 10^2
50000 with:
- One sig fig:
5 * 10^4
- Two sig figs:
5.0 * 10^4
- Three sig figs:
5.00 * 10^4
Addition and Subtraction
- Align numbers by decimals.
- Final answer is uncertain at the place of least significance.
- Examples:
2314 + 5.23 = 2319.23 rounded to 2319.23 uncertain at 0.01 place.
Multiplication and Division
- Final answer should have the same number of sig figs as the number with the least sig figs in the operation.
- Examples:
9.6 * 7 = 67.2 rounded to 70
5363.172 / 13.2 = 406.3009 rounded to 40.6*
Complex Operations
- Order of Operations (PEMDAS): Perform operations in parentheses first, then exponents, multiplication, etc.
- Intermediate values should be calculated exactly; round the final result according to sig figs.
- Example:
(4.31 * 52.31) + 6.814 has intermediate multiplication result rounded to least number of sig figs before final addition.*
Scientific Notation Operations
- Addition: Adjust exponents to match before adding coefficients.
- Rounding: Round final result to the least number of sig figs from the initial numbers.
- Example:
4.23 * 10^6 + 5.1 * 10^6 = 9.3 * 10^6
- Multiplication: Add exponents, multiply coefficients, round to least sig figs.
- Example:
1.5 * 10^2 * 2.13 * 10^3 = 3.2 * 10^5*
Summary
- Use rules for counting significant figures based on position and presence of decimal point.
- Apply correct rounding rules especially in combined operations.
- Use scientific notation to manage significant figures in large or small numbers effectively.
Keep practicing with various types of problems to master the counting and rounding of significant figures effectively!