📏

Significant Figures: Counting and Rounding

Jun 21, 2024

Significant Figures: Counting and Rounding

Key Concepts

  • Significant Figures (Sig Figs): Measure of precision in numerical data.
  • Rules for Counting Sig Figs:
    • Any nonzero number is significant.
    • Zeros between nonzero digits are significant.
    • Leading zeros (zeros before the first nonzero digit) are not significant.
    • Trailing zeros (zeros after the last nonzero digit) are significant if there's a decimal point.

Examples

  • 126 → 3 sig figs
  • 95 → 2 sig figs
  • 4873 → 4 sig figs
  • 404 → 3 sig figs (zeros between nonzero digits)
  • 50006 → 4 sig figs
  • 7080 → 4 sig figs (trailing zeros not counted without decimal)
  • 8000 → 1 sig fig
  • 800.0 → 4 sig figs (decimal makes all zeros significant)
  • 0.153 → 3 sig figs (leading zeros not counted)
  • 0.001008 → 4 sig figs (trailing zeros after decimal are significant)
  • 5.070080 → 7 sig figs (all zeros after decimal are significant)

Scientific Notation

  • Ignore the multiplier (e.g., 3.06 * 10^5 has 3 sig figs).
  • Examples:
    • 2.53 * 10^4 → 3 sig figs
    • 1.00 * 10^8 → 4 sig figs
    • 4.20 * 10^7 → 3 sig figs

Rounding Sig Figs

  • One Sig Fig: Round based on the first digit (e.g., 4257 → 4000 if next digit < 5).
  • Two Sig Figs: Consider next digits (e.g., 4257 → 4300 because 5 rounds up).
  • Three Sig Figs: 4257 → 4260 (6 rounds up).
  • Four Sig Figs: 4257 → 4257 (no rounding needed as next digit is not > 5).

Combined Operations and Rounding Examples

Rounding Exercises

  • 158.1054 to:
    • One sig fig: 200
    • Two sig figs: 160
    • Three sig figs: 158
    • Four sig figs: 158.1
    • Five sig figs: 158.11
  • 0.35047 to:
    • One sig fig: 0.4
    • Two sig figs: 0.35
    • Three sig figs: 0.350
    • Four sig figs: 0.3505

Special Cases

  • 100 with 2 sig figs: Use scientific notation: 1.0 * 10^2
  • 50000 with:
    • One sig fig: 5 * 10^4
    • Two sig figs: 5.0 * 10^4
    • Three sig figs: 5.00 * 10^4

Addition and Subtraction

  • Align numbers by decimals.
  • Final answer is uncertain at the place of least significance.
  • Examples:
    • 2314 + 5.23 = 2319.23 rounded to 2319.23 uncertain at 0.01 place.

Multiplication and Division

  • Final answer should have the same number of sig figs as the number with the least sig figs in the operation.
  • Examples:
    • 9.6 * 7 = 67.2 rounded to 70
    • 5363.172 / 13.2 = 406.3009 rounded to 40.6

Complex Operations

  • Order of Operations (PEMDAS): Perform operations in parentheses first, then exponents, multiplication, etc.
  • Intermediate values should be calculated exactly; round the final result according to sig figs.
  • Example: (4.31 * 52.31) + 6.814 has intermediate multiplication result rounded to least number of sig figs before final addition.

Scientific Notation Operations

  • Addition: Adjust exponents to match before adding coefficients.
  • Rounding: Round final result to the least number of sig figs from the initial numbers.
  • Example: 4.23 * 10^6 + 5.1 * 10^6 = 9.3 * 10^6
  • Multiplication: Add exponents, multiply coefficients, round to least sig figs.
  • Example: 1.5 * 10^2 * 2.13 * 10^3 = 3.2 * 10^5

Summary

  • Use rules for counting significant figures based on position and presence of decimal point.
  • Apply correct rounding rules especially in combined operations.
  • Use scientific notation to manage significant figures in large or small numbers effectively.

Keep practicing with various types of problems to master the counting and rounding of significant figures effectively!