Understanding Domain and Range in Rational Functions

Aug 22, 2024

Domain and Range of Rational Functions

Introduction

  • Today's topic: Finding the domain and range of rational functions.
  • Example functions:
    • f(x) = 2/(x + 1)
    • g(x) = (x - 2)/(x + 2)
    • h(x) = (x² - 3x - 4)/(x + 1)

Definitions

  • Domain: Set of all possible x values.
  • Range: Set of all possible y values.

Example 1: f(x) = 2/(x + 1)

Finding the Domain

  • Denominator: x + 1
  • Set denominator ≠ 0:
    • x + 1 ≠ 0
    • x ≠ -1
  • Domain:
    • Set of x such that x ∈ ℝ, x ≠ -1.

Finding the Range

  • Replace f(x) with y:
    • y = 2/(x + 1)
  • Cross-multiply to solve for x:
    • y(x + 1) = 2
    • x + 1 = 2/y
    • x = 2/y - 1
  • Restriction: y ≠ 0 (denominator cannot be zero)
  • Range:
    • Set of y such that y ∈ ℝ, y ≠ 0.

Example 2: g(x) = (x - 2)/(x + 2)

Finding the Domain

  • Denominator: x + 2
  • Set denominator ≠ 0:
    • x + 2 ≠ 0
    • x ≠ -2
  • Domain:
    • Set of x such that x ∈ ℝ, x ≠ -2.

Finding the Range

  • Replace g(x) with y:
    • y = (x - 2)/(x + 2)
  • Cross-multiply:
    • y(x + 2) = x - 2
    • xy + 2y = x - 2
    • xy - x = -2y - 2
    • x(y - 1) = -2y - 2
    • x = (-2y - 2)/(y - 1)
  • Restriction: y ≠ 1 (denominator cannot be zero)
  • Range:
    • Set of y such that y ∈ ℝ, y ≠ 1.

Example 3: h(x) = (x² - 3x - 4)/(x + 1)

Finding the Domain

  • Denominator: x + 1
  • Set denominator ≠ 0:
    • x + 1 ≠ 0
    • x ≠ -1
  • Domain:
    • Set of x such that x ∈ ℝ, x ≠ -1.

Finding the Range

  • Replace h(x) with y:
    • y = (x² - 3x - 4)/(x + 1)
  • Factor the numerator:
    • (x - 4)(x + 1)
  • Cancel common factor (x + 1):
    • y = x - 4
  • Restricted value: if x = -1, then y = -5
  • Range:
    • Set of y such that y ∈ ℝ, y ≠ -5.

Conclusion

  • Summary of domains and ranges for each function:
    • f(x): Domain: x ≠ -1, Range: y ≠ 0
    • g(x): Domain: x ≠ -2, Range: y ≠ 1
    • h(x): Domain: x ≠ -1, Range: y ≠ -5
  • Questions or clarifications can be left in the comments.