Coconote
AI notes
AI voice & video notes
Try for free
📐
Understanding Domain and Range in Rational Functions
Aug 22, 2024
Domain and Range of Rational Functions
Introduction
Today's topic: Finding the domain and range of rational functions.
Example functions:
f(x) = 2/(x + 1)
g(x) = (x - 2)/(x + 2)
h(x) = (x² - 3x - 4)/(x + 1)
Definitions
Domain
: Set of all possible x values.
Range
: Set of all possible y values.
Example 1: f(x) = 2/(x + 1)
Finding the Domain
Denominator: x + 1
Set denominator ≠ 0:
x + 1 ≠ 0
x ≠ -1
Domain
:
Set of x such that x ∈ ℝ, x ≠ -1.
Finding the Range
Replace f(x) with y:
y = 2/(x + 1)
Cross-multiply to solve for x:
y(x + 1) = 2
x + 1 = 2/y
x = 2/y - 1
Restriction: y ≠ 0 (denominator cannot be zero)
Range
:
Set of y such that y ∈ ℝ, y ≠ 0.
Example 2: g(x) = (x - 2)/(x + 2)
Finding the Domain
Denominator: x + 2
Set denominator ≠ 0:
x + 2 ≠ 0
x ≠ -2
Domain
:
Set of x such that x ∈ ℝ, x ≠ -2.
Finding the Range
Replace g(x) with y:
y = (x - 2)/(x + 2)
Cross-multiply:
y(x + 2) = x - 2
xy + 2y = x - 2
xy - x = -2y - 2
x(y - 1) = -2y - 2
x = (-2y - 2)/(y - 1)
Restriction: y ≠ 1 (denominator cannot be zero)
Range
:
Set of y such that y ∈ ℝ, y ≠ 1.
Example 3: h(x) = (x² - 3x - 4)/(x + 1)
Finding the Domain
Denominator: x + 1
Set denominator ≠ 0:
x + 1 ≠ 0
x ≠ -1
Domain
:
Set of x such that x ∈ ℝ, x ≠ -1.
Finding the Range
Replace h(x) with y:
y = (x² - 3x - 4)/(x + 1)
Factor the numerator:
(x - 4)(x + 1)
Cancel common factor (x + 1):
y = x - 4
Restricted value: if x = -1, then y = -5
Range
:
Set of y such that y ∈ ℝ, y ≠ -5.
Conclusion
Summary of domains and ranges for each function:
f(x)
: Domain: x ≠ -1, Range: y ≠ 0
g(x)
: Domain: x ≠ -2, Range: y ≠ 1
h(x)
: Domain: x ≠ -1, Range: y ≠ -5
Questions or clarifications can be left in the comments.
📄
Full transcript