Jun 5, 2025
alpha*Row_i + Row_j → Row_j does not change the determinant.Row_i ↔ Row_j) introduces a factor of -1 to the determinant.-2*Row_1 + Row_2 → Row_2 to introduce zeros.Invertibility and Determinant:
Transpose and Determinant:
det(A^T) = det(A), supports the idea of cofactor expansion across any row/column.Multiplication Property:
det(AB) = det(A) * det(B) but not applicable to addition (det(A + B) ≠ det(A) + det(B)).det(A^3) = (det(A))^3.Inverse and Determinant:
det(A^(-1)) = 1/det(A) if det(A) ≠ 0.*