📉

Understanding Exponential Decay and Half-Life

Aug 14, 2024

Exponential Decay and Half-Life

Exponential Decay Graph

  • N: Number of radioactive nuclei as a function of time (T).
  • Equation: ( N = N_0 e^{-\lambda T} )
    • ( N_0 ): Initial number of nuclei
    • ( \lambda ): Decay constant (can also be called K)

Initial Number of Nuclei

  • At ( T = 0 ):
    • ( N = N_0 e^{-\lambda \cdot 0} = N_0 )
    • ( N_0 ) represents the initial number of radioactive nuclei.

Half-Life

  • Half-life: Time when the number of radioactive nuclei is half its initial value.
  • At half-life:
    • ( N = \frac{N_0}{2} )
  • Equation for half-life:
    • ( \ln(\frac{1}{2}) = -0.693 )
    • ( -\lambda T_{1/2} = -0.693 )
    • Solving for Half-life: ( T_{1/2} = \frac{0.693}{\lambda} )
  • Solving for Decay Constant: ( \lambda = \frac{0.693}{T_{1/2}} )_

Semi-log Plots

Overview

  • Another method to analyze exponential decay data.
  • Conversion to linear form:
    • Start with ( N = N_0 e^{-\lambda T} )
    • Divide by ( N_0 ): ( \frac{N}{N_0} = e^{-\lambda T} )
    • Take the natural log: ( \ln(\frac{N}{N_0}) = -\lambda T )
    • Rearrange to linear form: ( \ln(N) = -\lambda T + \ln(N_0) )

Interpretation

  • Resembles the straight-line equation ( Y = MX + B )
    • Y: ( \ln(N) )
    • M: (-\lambda)
    • X: Time (T)
    • B: ( \ln(N_0) ) (Vertical intercept)
  • Graphing:
    • Y-axis: ( \ln(N) )
    • X-axis: Time (T)
    • Vertical intercept: ( \ln(N_0) )
    • Slope: (-\lambda)
  • Uses:
    • Determining the decay constant from the slope.
    • Calculating half-life using the decay constant.