Coconote
AI notes
AI voice & video notes
Try for free
📉
Understanding Exponential Decay and Half-Life
Aug 14, 2024
Exponential Decay and Half-Life
Exponential Decay Graph
N
: Number of radioactive nuclei as a function of time (T).
Equation
: ( N = N_0 e^{-\lambda T} )
( N_0 ): Initial number of nuclei
( \lambda ): Decay constant (can also be called K)
Initial Number of Nuclei
At ( T = 0 ):
( N = N_0 e^{-\lambda \cdot 0} = N_0 )
( N_0 ) represents the initial number of radioactive nuclei.
Half-Life
Half-life
: Time when the number of radioactive nuclei is half its initial value.
At half-life:
( N = \frac{N_0}{2} )
Equation for half-life:
( \ln(\frac{1}{2}) = -0.693 )
( -\lambda T_{1/2} = -0.693 )
Solving for Half-life
: ( T_{1/2} = \frac{0.693}{\lambda} )
Solving for Decay Constant
: ( \lambda = \frac{0.693}{T_{1/2}} )_
Semi-log Plots
Overview
Another method to analyze exponential decay data.
Conversion to linear form:
Start with ( N = N_0 e^{-\lambda T} )
Divide by ( N_0 ): ( \frac{N}{N_0} = e^{-\lambda T} )
Take the natural log: ( \ln(\frac{N}{N_0}) = -\lambda T )
Rearrange to linear form: ( \ln(N) = -\lambda T + \ln(N_0) )
Interpretation
Resembles the straight-line equation ( Y = MX + B )
Y
: ( \ln(N) )
M
: (-\lambda)
X
: Time (T)
B
: ( \ln(N_0) ) (Vertical intercept)
Graphing
:
Y-axis: ( \ln(N) )
X-axis: Time (T)
Vertical intercept: ( \ln(N_0) )
Slope: (-\lambda)
Uses
:
Determining the decay constant from the slope.
Calculating half-life using the decay constant.
📄
Full transcript