Adding and Subtracting Rational Algebraic Expressions

Jun 14, 2024

Lecture Notes on Adding and Subtracting Rational Algebraic Expressions

Adding and Subtracting Similar Fractions

Steps:

  1. Find the Least Common Denominator (LCD).
  2. Solve for the numerator.
  3. Simplify the expression.

Example 1: Adding Fractions

  • Given: (\frac{2}{2} + \frac{1}{4})
  • Steps:
    • LCD: 4
    • Calculation: ( 4 \div 2 = 2 \text{ (times 2)} = 4 4 \div 4 = 1 \text{ (times 1)} = 1 4 + 1 = 5 )
    • Result: (\frac{5}{4}) or (1 \frac{1}{4})

Butterfly Method

  • Multiply the denominators and cross-multiply the numerators:
    • LCD: (8)
    • Calculation:
      • Numerator: (2 \times 4 = 8, 1 \times 2 = 2)
      • Sum: (8 + 2 = 10)
    • Result: (\frac{10}{8}) or (1 \frac{1}{4})

Example 2: Subtracting Fractions

  • Given: (\frac{2}{2} - \frac{1}{6})
  • Steps:
    • LCD: 6
    • Calculation: ( 6 \div 2 = 3 \text{ (times 2)} = 6 6 \div 6 = 1 \text{ (times 1)} = 1 3 - 1 = 2 )
    • Result: (\frac{5}{6})

Butterfly Method

  • Multiply the denominators and cross-multiply the numerators:
    • LCD: (12)
    • Calculation:
      • Numerator: (2 \times 6 = 12, 1 \times 2 = 2)
      • Difference: (12 - 2 = 10)
    • Result: (\frac{10}{12}) or (\frac{5}{6})

Adding and Subtracting Rational Algebraic Expressions with Unlike Denominators

Steps:

  1. Factor the denominators completely.
  2. Find the LCD.
  3. Write equivalent expressions using the LCD.
  4. Add or subtract the numerators.
  5. Simplify and keep the LCD.

Example 1: Adding Rational Expressions

  • Given: (\frac{5}{8m^2n^4} + \frac{2}{6m^3n})
  • Steps:
    • Factor Denominators:
      • (8m^2n^4 = 2^3m^2n^4)
      • (6m^3n = 2 \times 3 \times m^3 \times n)
    • Find LCD: Highest degree of each factor.
      • Factors: (2^3, 3, m^3, n^4)
      • LCD: (24m^3n^4)
    • Write Equivalent Expressions:
      • (\frac{5 \times 3m}{24m^3n^4} + \frac{2 \times 4n^3}{24m^3n^4})
      • Simplify Numerators: (15m + 8n^3)
    • Result: (\frac{15m + 8n^3}{24m^3n^4})

Example 2: Adding Rational Expressions

  • Given: (\frac{2y}{5x^2} + \frac{3x}{4xy})
  • Steps:
    • Factor Denominators:
      • (5x^2)
      • (4xy)
    • Find LCD: Highest degree of each factor.
      • Factors: (5, 4, x^2, y)
      • LCD: (20x^2y)
    • Write Equivalent Expressions:
      • (\frac{2y \times 4}{20x^2y} + \frac{3x \times 5}{20x^2y})
      • Simplify Numerators: (8y^2 + 15x^2)
    • Result: (\frac{8y^2 + 15x^2}{20x^2y})

Example 3: Subtracting Rational Expressions

  • Given: (\frac{4x}{x^2 - 25} - \frac{5}{x - 5})
  • Steps:
    • Factor Denominators:
      • (\frac{4x}{(x+5)(x-5)} - \frac{5}{x-5})
    • Find LCD: ((x+5)(x-5))
    • Write Equivalent Expressions:
      • (\frac{4x}{(x+5)(x-5)} - \frac{5(x+5)}{(x+5)(x-5)})
      • Simplify Numerators: (4x - [5(x + 5)] = 4x - 5x - 25 = -x - 25)
    • Result: (\frac{-x - 25}{(x+5)(x-5)})

Conclusion:

  • Practice finding the LCD, writing equivalent fractions, and simplifying expressions.
  • Don't forget to factor denominators completely before starting.
  • Use methods like butterfly method for simpler problems.

Thank you for watching! Don't forget to like, subscribe, and hit the notification bell for more video tutorials. This is your guide in learning math lessons.