🏏

IPL Data Project with Apache Spark and Databricks

Jul 15, 2024

IPL Data Project with Apache Spark and Databricks

Project Overview

  • IPL Dataset: Indian cricket Premier League data
  • Tools Used:
    • Amazon S3: Data storage
    • Databricks: Environment and tools
    • Apache Spark: Transformation and analytics
    • SQL: Data analysis
    • Visualization: Data visualization to understand insights

Project Steps

  1. Upload Data: Upload IPL dataset to Amazon S3
  2. Databricks Environment: Use Databricks to create and manage Spark operations
  3. Apache Spark: Write PySpark code for transformations
  4. SQL Analysis: Write SQL queries to analyze data
  5. Visualization: Build visual representations of the data

Architecture Diagram

  • Basic architecture of project execution

Introduction to Apache Spark

  • Spark Core: Heart of Spark for executing code
  • Spark SQL: Write SQL queries within Spark applications
  • Spark Streaming: Process real-time data
  • Spark MLlib: Machine learning library in Spark
  • GraphX: Processing graphical data
  • Spark API Levels: RDDs, DataFrames, Datasets
  • Cluster Management: Execution of Spark applications across clusters
  • Driver and Executor: Core components of Spark
    • Driver manages and schedules tasks
    • Executors run the scheduled tasks
  • Spark Session: Entry point for Spark applications
  • Lazy Evaluation: Transformations applied on data when an action is called

Apache Spark Transformations

  • Schema Definition: Define the structure of the dataset using StrucField and StructType
  • Basic Transformations: Filtering, Mapping, Aggregations
  • Window Functions: Compute metrics over specified windows
  • Actions: Trigger execution of transformations

Databricks Environment

  • How to set up Databricks Community Edition
  • Creating a compute cluster
  • Creating and managing notebooks

Reading Data with PySpark

  • Read data from S3 bucket into Spark DataFrames
  • Define schema to ensure correct data types
  • Code sample for reading CSV files and defining schema
from pyspark.sql import SparkSession from pyspark.sql.types import StructType, StructField, StringType, IntegerType, BooleanType, DateType spark = SparkSession.builder.appName('IPLDataAnalysis').getOrCreate() schema = StructType([ StructField('match_id', IntegerType(), True), StructField('over_id', IntegerType(), True), StructField('ball_id', IntegerType(), True), StructField('innings_number', IntegerType(), True), StructField('team_batting', StringType(), True), StructField('team_bowling', StringType(), True) #... additional fields ]) ball_by_ball_df = spark.read.format('csv').schema(schema).option('header', 'true').load('s3a://bucket/path/to/csv')

Writing Transformations

  • Example transformations: Filtering wides and no-balls, aggregating runs
  • Example of window function: Running total of runs in a match for each over

SQL Analytics

  • Convert DataFrames to SQL Temp Views
ball_by_ball_df.createOrReplaceTempView('ball_by_ball')
  • Example SQL queries: Top scoring batsmen per season, economical bowlers in power-play

Visualization

  • Convert results to Pandas DataFrames
  • Visualization libraries: Matplotlib, Seaborn
  • Example visualizations: Top scoring batsmen, toss impact, average runs

Additional Notes

  • Utilize ChatGPT for generating code snippets to increase productivity
  • Practice writing PySpark code to gain confidence
  • Focus on project-specific transformations and visualizations as per insights required

Conclusion

  • This project shows the end-to-end data processing pipeline using Apache Spark and Databricks
  • Key learning goals: Spark transformations, SQL analytics, data visualization
  • Recommended further learning: Apache Spark in-depth courses for more advanced topics and hands-on projects