Coconote
AI notes
AI voice & video notes
Try for free
📐
Introduction to Right Triangle Trigonometry
Feb 21, 2025
Right Triangle Trigonometry
SOH CAH TOA
Definition
: A mnemonic to remember the definitions of sine, cosine, and tangent.
Sine (SOH)
: ( \sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}} )
Cosine (CAH)
: ( \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} )
Tangent (TOA)
: ( \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} )
Triangle Sides
Opposite Side
: side opposite to angle ( \theta )
Adjacent Side
: side next to angle ( \theta )
Hypotenuse
: longest side, opposite the right angle
Pythagorean Theorem
Formula: ( a^2 + b^2 = c^2 )
A reminder for right triangles; not the main focus of this lesson.
Six Trigonometric Functions
Sine
: ( \sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}} )
Cosine
: ( \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} )
Tangent
: ( \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} )
Cosecant
: ( \csc(\theta) = \frac{1}{\sin(\theta)} = \frac{\text{Hypotenuse}}{\text{Opposite}} )
Secant
: ( \sec(\theta) = \frac{1}{\cos(\theta)} = \frac{\text{Hypotenuse}}{\text{Adjacent}} )
Cotangent
: ( \cot(\theta) = \frac{1}{\tan(\theta)} = \frac{\text{Adjacent}}{\text{Opposite}} )
Example Problem 1
Given:
One side = 3, other side = 4
Find hypotenuse using Pythagorean theorem:
( 3^2 + 4^2 = c^2 )
( 9 + 16 = 25 )
( c = 5 )
Finding Trigonometric Functions:
Sine
: ( \sin(\theta) = \frac{4}{5} )
Cosine
: ( \cos(\theta) = \frac{3}{5} )
Tangent
: ( \tan(\theta) = \frac{4}{3} )
Cosecant
: ( \csc(\theta) = \frac{5}{4} )
Secant
: ( \sec(\theta) = \frac{5}{3} )
Cotangent
: ( \cot(\theta) = \frac{3}{4} )
Special Right Triangles
Common Triples
:
3, 4, 5
5, 12, 13
8, 15, 17
7, 24, 25
Multiples of Special Triples
Multiply by integers (e.g., 2, 3) to create new triangles.
Example Problem 2
Given:
Sides = 8, 17 (Find missing side)
Recognize as 8-15-17 triangle.
Missing side = 15 using:
( 8^2 + 15^2 = 17^2 )
Finding Trigonometric Functions:
Sine
: ( \sin(\theta) = \frac{15}{17} )
Cosine
: ( \cos(\theta) = \frac{8}{17} )
Tangent
: ( \tan(\theta) = \frac{15}{8} )
Cosecant
: ( \csc(\theta) = \frac{17}{15} )
Secant
: ( \sec(\theta) = \frac{17}{8} )
Cotangent
: ( \cot(\theta) = \frac{8}{15} )
Example Problem 3
Given hypotenuse = 25, side = 15.
Recognize as 15-20-25 triangle.
Find missing side (20) and functions:
Sine
: ( \sin(\theta) = \frac{20}{25} = \frac{4}{5} )
Cosine
: ( \cos(\theta) = \frac{15}{25} = \frac{3}{5} )
Tangent
: ( \tan(\theta) = \frac{20}{15} = \frac{4}{3} )
Cosecant
: ( \csc(\theta) = \frac{5}{4} )
Secant
: ( \sec(\theta) = \frac{5}{3} )
Cotangent
: ( \cot(\theta) = \frac{3}{4} )
Finding Missing Sides and Angles
General Steps:
Identify known sides relative to angle.
Use appropriate trigonometric function (sine, cosine, tangent).
Rearrange to isolate the unknown variable.
Example: Given Opposite Side x and Adjacent Side 42
Use tangent: ( \tan(38^{\circ}) = \frac{x}{42} )
Solve for x: ( x = 42 \tan(38^{\circ}) )
Get x using calculator (ensure in degree mode).
Example: Given Hypotenuse = 26, Adjacent Side X
Use cosine: ( \cos(54^{\circ}) = \frac{x}{26} )
Solve for x: ( x = 26 \cos(54^{\circ}) )
Finding Angles
Use inverse trig functions (e.g., ( \theta = \tan^{-1} \left( \frac{5}{4} \right) ))
Conclusion
Trigonometric functions help solve right triangle problems efficiently.
Practice using different examples to gain proficiency.
Course Access
Trigonometry Course
: Available on Udemy
Topics: Angles, Unit Circle, Right Triangle Trigonometry, Applications, Graphing, Inverse Functions, Trig Identities, etc.
📄
Full transcript