📐

Introduction to Right Triangle Trigonometry

Feb 21, 2025

Right Triangle Trigonometry

SOH CAH TOA

  • Definition: A mnemonic to remember the definitions of sine, cosine, and tangent.
  • Sine (SOH): ( \sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}} )
  • Cosine (CAH): ( \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} )
  • Tangent (TOA): ( \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} )

Triangle Sides

  • Opposite Side: side opposite to angle ( \theta )
  • Adjacent Side: side next to angle ( \theta )
  • Hypotenuse: longest side, opposite the right angle

Pythagorean Theorem

  • Formula: ( a^2 + b^2 = c^2 )
  • A reminder for right triangles; not the main focus of this lesson.

Six Trigonometric Functions

  1. Sine: ( \sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}} )
  2. Cosine: ( \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} )
  3. Tangent: ( \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} )
  4. Cosecant: ( \csc(\theta) = \frac{1}{\sin(\theta)} = \frac{\text{Hypotenuse}}{\text{Opposite}} )
  5. Secant: ( \sec(\theta) = \frac{1}{\cos(\theta)} = \frac{\text{Hypotenuse}}{\text{Adjacent}} )
  6. Cotangent: ( \cot(\theta) = \frac{1}{\tan(\theta)} = \frac{\text{Adjacent}}{\text{Opposite}} )

Example Problem 1

Given:

  • One side = 3, other side = 4
  • Find hypotenuse using Pythagorean theorem:
    • ( 3^2 + 4^2 = c^2 )
    • ( 9 + 16 = 25 )
    • ( c = 5 )

Finding Trigonometric Functions:

  • Sine: ( \sin(\theta) = \frac{4}{5} )
  • Cosine: ( \cos(\theta) = \frac{3}{5} )
  • Tangent: ( \tan(\theta) = \frac{4}{3} )
  • Cosecant: ( \csc(\theta) = \frac{5}{4} )
  • Secant: ( \sec(\theta) = \frac{5}{3} )
  • Cotangent: ( \cot(\theta) = \frac{3}{4} )

Special Right Triangles

  • Common Triples:
    • 3, 4, 5
    • 5, 12, 13
    • 8, 15, 17
    • 7, 24, 25

Multiples of Special Triples

  • Multiply by integers (e.g., 2, 3) to create new triangles.

Example Problem 2

Given:

  • Sides = 8, 17 (Find missing side)
  • Recognize as 8-15-17 triangle.
  • Missing side = 15 using:
    • ( 8^2 + 15^2 = 17^2 )

Finding Trigonometric Functions:

  • Sine: ( \sin(\theta) = \frac{15}{17} )
  • Cosine: ( \cos(\theta) = \frac{8}{17} )
  • Tangent: ( \tan(\theta) = \frac{15}{8} )
  • Cosecant: ( \csc(\theta) = \frac{17}{15} )
  • Secant: ( \sec(\theta) = \frac{17}{8} )
  • Cotangent: ( \cot(\theta) = \frac{8}{15} )

Example Problem 3

  • Given hypotenuse = 25, side = 15.
  • Recognize as 15-20-25 triangle.
  • Find missing side (20) and functions:
    • Sine: ( \sin(\theta) = \frac{20}{25} = \frac{4}{5} )
    • Cosine: ( \cos(\theta) = \frac{15}{25} = \frac{3}{5} )
    • Tangent: ( \tan(\theta) = \frac{20}{15} = \frac{4}{3} )
    • Cosecant: ( \csc(\theta) = \frac{5}{4} )
    • Secant: ( \sec(\theta) = \frac{5}{3} )
    • Cotangent: ( \cot(\theta) = \frac{3}{4} )

Finding Missing Sides and Angles

General Steps:

  • Identify known sides relative to angle.
  • Use appropriate trigonometric function (sine, cosine, tangent).
  • Rearrange to isolate the unknown variable.

Example: Given Opposite Side x and Adjacent Side 42

  • Use tangent: ( \tan(38^{\circ}) = \frac{x}{42} )
  • Solve for x: ( x = 42 \tan(38^{\circ}) )
  • Get x using calculator (ensure in degree mode).

Example: Given Hypotenuse = 26, Adjacent Side X

  • Use cosine: ( \cos(54^{\circ}) = \frac{x}{26} )
  • Solve for x: ( x = 26 \cos(54^{\circ}) )

Finding Angles

  • Use inverse trig functions (e.g., ( \theta = \tan^{-1} \left( \frac{5}{4} \right) ))

Conclusion

  • Trigonometric functions help solve right triangle problems efficiently.
  • Practice using different examples to gain proficiency.

Course Access

  • Trigonometry Course: Available on Udemy
  • Topics: Angles, Unit Circle, Right Triangle Trigonometry, Applications, Graphing, Inverse Functions, Trig Identities, etc.