📘

Form 1 Chapter 1: Rational Numbers

Jun 8, 2024

Form 1 Chapter 1: Rational Numbers

Topics Covered

  • 1.1 Integers
  • 1.2 Basic Arithmetic Operations Involving Integers
  • 1.3 Positive and Negative Fractions
  • 1.4 Positive and Negative Decimals
  • 1.5 Rational Numbers

1.1 Integers

Positive and Negative Integers

  • Whole numbers: 0, 1, 2, 3, 4, 5, etc. (No fractions or negatives)
  • Integers: Positive, negative whole numbers and zero.

Exercise: Determine if Integer or Not

  • Integers: 15, 23, -76, 0, 6, 301, -239
  • Non-Integers: -3.4, 0.5, 0.88, -4/5

Number Line

  • Positive numbers > 0
  • Negative numbers < 0
  • Right direction = Larger values, Left direction = Smaller values

Exercise: Complete the Number Line

  • Numbers provided: -30, 6, -6, -36
  • Arrangement: -36, -30, -12, -6, 6

Compare and Arrange Integers

  • Ascending Order: -5, -3, -1, 0, 2, 4, 6
  • Descending Order: 5, 3, 2, -1, -2, -4, -5

1.2 Basic Arithmetic Operations Involving Integers

Addition and Subtraction

  • Same signs give positive
  • Different signs give negative
  • Examples:
    • 8 + 3 = 11
    • 5 + (-2) = 3
    • 2 - 4 = -2
    • -1 - (-4) = 3

Multiplication and Division

  • Same signs give positive
  • Different signs give negative
  • Examples:
    • -5 x -4 = 20
    • -6 x 4 = -24
    • 6 ÷ -2 = -3
    • -12 ÷ 2 = -6

Combined Operations

  • Priority: Brackets > Multiply/Divide (L to R) > Add/Subtract (L to R)
  • Examples:
    • -8 x (-2 + 2) = -8
    • 7 + 2 x (-3) = 1
    • 4 - 12 ÷ -2 + (-1) = 9
    • -12 + -16 ÷ -22 + 24 = -14

Arithmetic Laws

  • Commutative Law:
    • a + b = b + a
    • a x b = b x a
  • Associative Law:
    • (a + b) + c = a + (b + c)
    • (a x b) x c = a x (b x c)
  • Distributive Law:
    • a x (b + c) = (a x b) + (a x c)
    • a x (b - c) = (a x b) - (a x c)
  • Identity Law:
    • a + 0 = a
    • a x 0 = 0
    • a x 1 = a
    • a + -a = 0
    • a x 1/a = 1

1.3 Positive and Negative Fractions

Concepts

  • Fraction: Numerator/Denominator
  • Positive Fractions: > 0
  • Negative Fractions: < 0

Operations

Example: Arrange fractions

  • Convert to common denominators for comparison
  • Represent on number line: -5/8, -1/4, -3/4, -3/8, 1/8, 1/2

Example: Calculations

  • (5/3) x 12 - 25/30 = -13/18
  • (5/8) + (4/3) x (-6/5) = -39/40

1.4 Positive and Negative Decimals

Concepts

  • Positive Decimals: > 0
  • Negative Decimals: < 0

Example: Compare and Arrange Decimals

  • -1.6, 0.5, -0.3, 1.4, -0.7
  • Descending Order: 1.4, 0.5, -0.3, -0.7, -1.6

Example: Calculations

  • 3.5 - (-6.5 x 0.2) = 4.8
  • 7.23 + 2.77 ÷ -0.8 = -12.5
  • -3.7 + (2.85 x 0.3) = -1.57

1.5 Rational Numbers

Concepts

  • Rational Numbers: Fraction form p/q, q ≠ 0
  • Example: 1 & 4/5, 3/4, -9, 3.5 are rational (can be written as fractions)

Examples: Calculations

  • -0.4 + (3/2) x -1/8 = -47/80
  • 18 x (-7/12) + 3/2 ÷ 3/10 = -30

Reminder: Like, share and subscribe for more. Comment with questions.