🔊

Understanding AC Waveforms and Sine Waves

Dec 11, 2024

Topic 4: AC Waveforms

Sine Wave (Degrees and Radians)

  • Circumference of a Circle: ( C = 2\pi )
    • For a circle with radius = 1 unit, the circumference ( C = 2\pi )
  • Conversions:
    • 360° = 2Ï€ radians
    • 180° = Ï€ radians
    • 1° = ( \frac{\pi}{180} ) radians
    • Sine wave rotates 360 degrees or 2Ï€ radians per cycle

Sine Wave (Angular Velocity)

  • Definitions:
    • Frequency = 10 Hz
    • Period = ( \frac{1}{f} ) seconds
    • Angular velocity ( \omega = 2\pi f )
    • Total angle in 1 second = ( 2\pi f ) radians

Examples

  • Example 4.1: Convert angles from degrees to radians
    • 30°, 45°, 420°, 77°
  • Example 4.2: Convert radians to degrees
    • 3Ï€, ( \frac{5\pi}{4} ), 1 rad, 0.32 rad

Sine Wave (General Form)

  • General equation: ( V = V_m \sin(\omega t + \phi) )
  • Phase Relations:
    • Positive phase shift: waveform shifts left
    • Negative phase shift: waveform shifts right

Practical Applications

  • Example 4.3: Frequency and time relations for sinusoidal waveforms
    • Given f = 50 Hz
    • Calculate time for 1 cycle, angular velocity, time for 60°
  • Example 4.4: Sinusoidal voltage waveform ( v = 325 \sin(628t) )
    • Find period, sketch waveform, and degrees per second

Average / Effective (RMS) Values

  • Definitions:
    • RMS value is the DC equivalent power value
    • ( V_{rms} = \frac{V_{peak}}{\sqrt{2}} )
  • Examples
    • Example 4.9: Calculate RMS and equivalent DC voltage
    • Example 4.10: Compare DC and AC power delivery

Summary

  • Sine waveforms are periodic and have specific angular velocity and frequency characteristics
  • Conversion between degrees and radians is crucial in AC waveform analysis
  • RMS values provide a basis for comparing AC and DC power delivery