🔍

Understanding Trigonometric Function Transformations

Jan 14, 2025

Transformations of Trigonometric Functions

Overview

  • Review of transformations from Grade 11
  • Focus on transformations applied to sine and cosine functions
  • Function form: ( K(X - D) + C )

Transformations

Y-coordinate Changes

  • Vertical Stretch/Compression:
    • ( a ) affects amplitude
    • Stretch if ( a > 1 )
    • Compression if ( 0 < a < 1 )
    • Reflection if ( a < 0 )
  • Vertical Shift:
    • ( C ) causes the entire function to shift up or down
    • Affects the axis placement

X-coordinate Changes

  • Horizontal Stretch/Compression:
    • ( K ) affects period of the function
    • Period formula: ( \text{Period} = \frac{2\pi}{K} )
    • Compression if ( K > 1 )
    • Stretch if ( 0 < K < 1 )
  • Horizontal Shift:
    • ( D ) shifts function left or right
    • Important to factor out ( K )

Example Problems

  1. Graphing ( y = \frac{1}{2} \cos \left( \frac{x}{2} - \frac{\pi}{12} \right) - 1 )

    • Transformations:
      • ( Y ): ( \frac{1}{2}Y - 1 )
      • ( X ): ( 2X + \frac{\pi}{6} )
    • Period Calculation:
      • ( \text{Period} = \frac{2\pi}{\frac{1}{2}} = 4\pi )
    • Key Points and Sketching:
      • Start by identifying key points and apply transformations.
  2. Graphing ( y = -\sin(2(x + \frac{\pi}{4})) + 2 )

    • Transformations:
      • Axis: ( y = 2 )
      • Negative Sine Function: Reflects vertically
    • Period Calculation:
      • ( \text{Period} = \frac{2\pi}{2} = \pi )
    • Sketching Technique:
      • Identify axis and amplitude, then locate quarter points based on period

Key Concepts

  • Understand how amplitude, period, and shifts affect sine and cosine graphs
  • Factor out ( K ) for correct transformations
  • Use both mapping rules and graphical techniques to plot functions accurately

Upcoming Lessons

  • Word problems and applications involving these transformations
  • Reciprocal trigonometric functions
  • Modeling with trigonometric functions