Coconote
AI notes
AI voice & video notes
Try for free
đ
Understanding Trigonometric Substitution Techniques
Feb 13, 2025
Lecture Notes: Trigonometric Substitution
Introduction
Topic:
Integration technique called trigonometric substitution.
Purpose:
Used to integrate square root functions, which can be notoriously difficult to integrate.
Main Idea:
Utilize trig integrals to simplify and solve integrals containing square root terms.
Key Trigonometric Substitutions
Square Root Forms and Their Substitutions:
(\sqrt{a^2 - x^2}) (\Rightarrow) Let (x = a \sin \theta)
(\sqrt{a^2 + x^2}) (\Rightarrow) Let (x = a \tan \theta)
(\sqrt{x^2 - a^2}) (\Rightarrow) Let (x = a \sec \theta)
Detailed Example: (\sqrt{a^2 - x^2})
Substitution:
Let (x = a \sin \theta).
Differential Calculation:
(dx = a \cos \theta \ d\theta).
Square Root Simplification:
(\sqrt{a^2 - x^2} = a \cos \theta) using the identity (1 - \sin^2 \theta = \cos^2 \theta).
Other Examples
(\sqrt{a^2 + x^2}) Example:
Use (x = a \tan \theta).
Identity: (\sec^2 \theta = 1 + \tan^2 \theta).
Result: (\sqrt{a^2 + x^2}) becomes (a \sec \theta).
(\sqrt{x^2 - a^2}) Example:
Use (x = a \sec \theta).
Identity: (\sec^2 \theta = 1 + \tan^2 \theta).
Result: (\sqrt{x^2 - a^2}) becomes (a \tan \theta).
Example Problem
Integral to Solve:
(\int \frac{1}{\sqrt{x^2 - 9}} , dx)
Identify Square Root Term:
(x^2 - 9)
Choose Substitution:
(x = 3 \sec \theta)
(dx = 3 \sec \theta \tan \theta , d\theta)
Square root becomes (3 \tan \theta).
Simplification:
Cancel terms to simplify integral to (\int \sec \theta , d\theta).
Integration of Secant:
Result: (\ln |\sec \theta + \tan \theta| + C)
Back-Substitute to x:
(\sec \theta = \frac{x}{3})
(\tan \theta = \frac{\sqrt{x^2 - 9}}{3})
Final Notes
Practice:
Trig substitution takes time and practice to master.
Challenges:
Involves multiple layers (substitution, trig identities, back-substitution).
Encouragement:
Donât worry if it doesnât click immediately; itâs one of the more challenging topics.
Conclusion:
More practice will follow in class.
đ
Full transcript