🧩

Lang Chain Crash Course and LLM Projects

Jul 18, 2024

Lang Chain Crash Course and LLM Projects

Introduction

  • Presenter: Krishn
  • Platform: YouTube
  • Topic: Lang Chain crash course and 6+ end-to-end LLM projects
  • Models: OpenAI, Llama 2 by Meta, Google Gemini Pro, Hugging Face
  • Tools: Hugging Face platform for deployment

Goals

  • Happy New Year 2024 wishes
  • Aim to help viewers achieve their goals and dreams
  • Detailed Lang Chain crash course
  • Development of 6+ end-to-end LLM projects
  • Usage of different LLM models
  • Frontend and backend development
  • Deployment on Hugging Face platform

Projects and Tools

  1. LLM Projects: Overview
    • Use models from OpenAI, Meta's Llama 2, Google Gemini Pro, and Hugging Face
    • Deploy on Hugging Face platform
  2. Lang Chain Series
    • Practical orientation of Lang Chain
    • Increasing industry usage of Lang Chain
    • Series will cover all practical aspects and components of Lang Chain

Lang Chain Components

  • LLMs: Large Language Models for various uses
  • Prompt Templates: To structure input and guide responses from LLMs
  • Output Parser: To format the output in a desired way
  • Environment Setup: Set up VSCode, create virtual environments, and install necessary libraries

Example Project: Q&A Chatbot

  • Tool: Streamlit for UI
  • Uses Lang Chain and OpenAI models
  • Example task: Asking about the capital of countries
  • Components: LLM model, prompt template, chain, and response handling

Detailed Steps

  1. Environment Setup
    • Use VSCode and create a new project folder
    • Create virtual environment and install required libraries (Lang Chain, OpenAI, Hugging Face Hub, Streamlit)
    • Write requirements.txt for easy library management
  2. API Key Management
    • Securely store and access OpenAI API keys using environment variables

Creating an OpenAI LLM Model

  • Create and configure LLM model with parameters like temperature
  • Code Example: from langchain.llms import OpenAI import os openai_key = os.environ['OPENAI_API_KEY'] llm = OpenAI(api_key=openai_key, temperature=0.6)

Usage of Prompt Template

  • Define input variables and structure
  • Example: Define country name for querying the capital
  • Code Example: from langchain.prompts import PromptTemplate prompt = PromptTemplate( input_variables=['country'], template='Tell me the capital of {country}' ) formatted_prompt = prompt.format(country='India') print(llm.predict(formatted_prompt))

Creating Chains

  • Chain LLM model and prompt templates
  • Use LLMChain to seamlessly combine them
  • Code Example: from langchain.chains import LLMChain chain = LLMChain(llm=llm, prompt=prompt) response = chain.run('What is the capital of India?') print(response)

Combining Multiple Chains

  • Use SequentialChain to handle multiple steps or transformations
  • Define multiple prompt templates and LLM chains
  • Aggregate outputs from multiple chains
  • Code Example: from langchain.chains import SequentialChain combined_chain = SequentialChain( chains=[capital_chain, famous_chain], ... )

Chat Models

  • Use Lang Chain's chat_openai for conversation modeling
  • Define human, system, and AI messages
  • Code Example: from langchain.chat_models import ChatOpenAI from langchain.schema import HumanMessage, SystemMessage, AIMessage chat_llm = ChatOpenAI(api_key=openai_key)

Prompt Template Integration with Output Parser

  • Use prompt templates with output parser to format outputs
  • Code Example: from langchain.schema import BaseOutputParser class CustomOutputParser(BaseOutputParser): def parse(self, text): return text.split(',') prompt = PromptTemplate( input_variables=['text'], template='Provide comma-separated values for: {text}', output_parser=CustomOutputParser() )

End-to-End Project Example

  • Q&A Chatbot using Streamlit and Lang Chain
  • Full project structure
  • Initial setup with environment and API key
  • Read and manage documents using Lang Chain
  • Create text embeddings and store in vector database (e.g., Pinecone)
  • Implement front-end interface using Streamlit

Example Code for Environment Setup & Execution

  • Code Example: # app.py import streamlit as st from langchain import OpenAI from langchain.prompts import PromptTemplate prompt = PromptTemplate( input_variables=['question'], template='Answer the question: {question}' ) llm = OpenAI(api_key='your-openai-key') st.title('Q&A Chatbot') question = st.text_input('Ask a question') if st.button('Submit'): response = llm.predict(prompt.format(question=question)) st.write(response)

Final Thoughts

  • Encourage practice and sharing of work
  • Emphasize the importance of understanding the flow and components of Lang Chain projects