Grade 12 Analytical Geometry - Circle Equations

Jul 26, 2024

Grade 12 Analytical Geometry - Circle Equations

Introduction to Circle Equations

  • Previous topics included parabolas and hyperbolas.
  • A circle is another type of graph defined by its own equation.

Circle Equation Structure

  • The general equation of a circle:
    • (x - a)² + (y - b)² = r²
      • a: x-coordinate of the center
      • b: y-coordinate of the center
      • r: radius of the circle

Example 1: Circle with Specific Center and Radius

  • Given:
    • Center: (2, 4)
    • Radius: 7
  • Equation of the circle:
    • (x - 2)² + (y - 4)² = 7²
    • (x - 2)² + (y - 4)² = 49

Example 2: Circle in Different Quadrant

  • Given:
    • Center: (-2, 4)
    • Radius: 7
  • Equation of the circle:
    • (x + 2)² + (y - 4)² = 7²
    • (x + 2)² + (y - 4)² = 49

Example 3: Circle at the Origin

  • Given:
    • Center: (0, 0)
    • Radius: 5
  • Equation of the circle:
    • x² + y² = 5²
    • x² + y² = 25

Example 4: Circle from Diameter Coordinates

  • Given diameter points A and B:
    • A = (7, 10)
    • B = (11, -2)
  • Find the center using the midpoint formula:
    • Midpoint = ((x₁ + x₂)/2, (y₁ + y₂)/2)
    • Center = ((7 + 11)/2, (10 - 2)/2) = (9, 4)
  • Radius calculation:
    • Distance formula used to find length AB:
    • Distance = √((x₂ - x₁)² + (y₂ - y₁)²)
    • Distance = √((7 - 11)² + (10 - (-2))²)
    • Calculate to find length and radius:
    • Length = 4√10, Radius = 2√10
    • Radius squared = (2√10)² = 40
  • Equation of the circle:
    • (x - 9)² + (y - 4)² = 40

Example 5: Circle with Center and Radius

  • Given:
    • Center: (-2, 7)
    • Radius: 8
  • Equation of the circle:
    • (x + 2)² + (y - 7)² = 8²
    • (x + 2)² + (y - 7)² = 64

Summary

  • Remember to use opposite coordinates for the circle center in the formula.
  • The equation of a circle can be adapted based on its center and radius.